SCM for Agile Development

Steve Berczuk

© 2008 Steve Berczuk

About Me

Scrum Practitioner

Overview

+ SCM Concepts
» Motivation

* How to Implement Agile SCM
(overview)

« Essential SCM Patterns and Practices
* Questions

What: SCM Concepts

* |dentification

» Control

+ Status Accounting
* Audit & Review

The Role of SCM
(Agile Teams)
Coordination « Agile goals:

Version Management — Delivering value
— Eliminate waste

Value of SCM

Build Management « SCM enables:
Agile teams need to have the right — Reliable delivery
amount of configuration “Management” — Maintenance &
Support
— Easier change
Tracking

Concepts: Workspace

» Everything you need
(GOOd) to develop and test
Software Configuration + Source
Management + Resources
Is Essential for * Developer,

Integration, etc

Agile Software Development

Concepts: Codeline

Definition

» Branch

* Trunk (MAIN)

* Issues:

— How Many?

— Enabling Integration
— Project Rhythm

Concepts: Tags, Revisions

Concepts: Repository

* Version
Management
System

+ SCM

+ Examples:

— Maven Repository

— Subversion
- CVs

Concepts: Locking Models

+ Pessimistic Locking
— Lock, Modify, Unlock
— One editor at a time —
— Need to be able to ’

override locks ,ﬁ |1 A

Concepts: Locking Models

» Optimistic Locking
— Copy, Modify, Merge
— Allows for
concurrency

Concepts (Review)

» Features and Value of SCM
+ SCM and Version Control

» Codeline & Commit

» Workspace

* Locking Models

Common Problems (1)

» Not Enough Process
— “Builds for me!”
— “Works for me...!”
— “The build is broken
again!”
— Ad-hoc code sharing

Common Problems (I1)

* Process Gets in the Way.

— Pre-check-in testing takes
too long

— Code freezelidle resources

* Long Integration Times at
Project Release.

— “Fixing it” in integration

Agility and SCM

+ Agile Methods emphasize:
— Feedback
— Communication
— Process that adds value
+ Agile SCM
— Simple and effective SCM
— Enables development
— Not only for agile teams
+ Balance Feedback and Stability

What is Agile SCM?

Individuals and Interactions over Processes and Tools

— SCM Tools should support the way that you work, not the other
way around

Working Software over Comprehensive Documentation

— SCM can automate development policies & processes:
Executable Knowledge over Documented Knowledge

Customer Collaboration over Contract Negotiation

— SCM should facilitate communication among stakeholders and
help manage expectations

Responding to Change over Following a Plan
— SCM is about facilitating change, not preventing it

The Agile SCM Cycle

BUILD
Code Agie "Tost
» SCM
b | Lifecycle /
INTEGRATE- Update

20

What: (Agile)SCM Concepts

+ ldentification
— Repository/Build
Scripts/Tags
+ Control
— lteration Planning
+ Status Accounting
— Dashboards
+ Audit & Review

— Unit and Acceptance
Testing

21

* Value
» Balance

* Communication &

Why? (Review)

* Productivity

— Save Time
— Faster Delivery

— stability
— progress

Coordination

22

* Environment
* Practices
» Patterns

How

BUILD

(Lod‘c (Age)

INTEGRATE-

Update

23

Environment

+ Organization
* Architecture
* SCM Process

24

Tools

* Tools Enable
* Process before

Tools N:—',‘-_i”-m =

—]
WY

25

Key Development Practices

* Codeline Structure
» Private Workspace
* Build

+ Test

» Deploy

* (Automate)

26

Codeline Structure:
Too Many Branches?
=

Main —>

27

Mainline

* You want to simplify
your codeline
structure and enable

frequent integration.

* How do you keep
the number of -
codelines :
manageable (and
minimize merging)?

28

Delayed Integration

"o 3

29

Mainline Tradeoffs

+ ABranch is a tool for isolating work.
— Branching can require merging.
— Merging can be difficult.

+ Codelines are a logical way to organize work.
* Isolation seems “safe.”
* You will need to integrate everything eventually.
* You want to:
— maximize concurrency.
— minimize problems cause by deferred integration.

30

Mainline (Solution)

When in doubt, do all of your work off of a single Mainline.
Integrate often.

Understand why you want to branch, and consider the costs.
You need to address architecture, code, and tests.

31

Active Development Line

* You are developing
on a Mainline but
worry about stability.

* How do you keep a
rapidly evolving
codeline stable
enough to be useful
without slowing
people down?

32

Fragile Codelines

33

Active Development Line

Use an Active Development Line.
Have “good enough” check-in policies for.
— More structure where needed.
Establish practices for an active codeline:
— Doing development: Private Workspace
— Keeping the codeline stable: Smoke Test
When to consider other approaches:
— Managing maintenance versions: Release Line
— Dealing with potentially tricky changes: Task Branch
— Avoiding code freeze: Release Prep Codeline

34

Workspaces and Builds

Support Testing
Required for Active
Development Line. Sl
New Person Starting -
R Code Agie) Test
on a project R y s 9
Code, build, and test N’
Commit changes INTEGRATE- uPd;’re

35

Private Workspace

You want to support an
Active Development Line.
How do you keep current
with a dynamic codeline
and also make progress
without being distracted by
your environment
changing from beneath
you?

36

Private Workspace
» Frequent integration
— Shows problems sooner.
— Integration problems can disrupt flow.
» Excessive isolation defers problems.
+ Shared workspaces can be problematic:
— Sometimes you need different code.
+ Parallel work

37

Private Workspace

» Create a Private Workspace that contains
everything to build a working system.
— You control when you get updates.
—You can test before committing changes.
+ Before integrating your changes:
— Update your workspace.
— Build your workspace.
— Test your code.

 Stay up-to-date!

38

Private Workspace Example

» Workspace
|] — App Server
— 1 — Database
l_—h B | Schema
= . [:ﬂ — Code for Web
' App
— Test CRS Login
— (Build/Deploy,
Configuration
Tools & Scripts)

39

Private Workspace Requires

» Populate the workspace: Repository

* Manage external code: Third Party Codeline

+ Build and test your code: Private System Build

* Integrate your changes and test: Integration Build

40

10

Repository

* Private Workspace
and Integration Build
need components.

* How do you get the
right versions of the
right components
into a new
workspace?

41

Repository

Many things make up a workspace:

— Code, libraries, scripts.

You want to be able to easily build a
workspace from nothing.

— New developers

— Integration workspaces

Components could come from a variety of
sources (3" Parties, other groups, etc).

Reproducibility essential to agility.

42

Repository

« Have a single point of access for everything.
« Have a mechanism to support easily getting things from the
Repository.
— Install Version Manager Client
— Get Project from Version Management
— Build, Deploy, Configure (Ant target, Maven goal)
— Simple, automated, repeatable process.
« Manage environment differences with configuration.
* Required:
— Manage external components:
Third Party Codeline

43

Hierarchy of configuration

« Common Settings

« Environment Specific Settings
— Development
— Integration
— Production

» User-specific overrides

+ Can be handled in architecture

44

11

Builds

» Value Working software

* Builds at various levels:
BUILD

— Developer

— Integration

— Release Code (e) "est
+ Build scripts are code! w
+ Build : “Compile & Test”
» Deploy frequently INTEGRATE- Update

45

Private System Build

* You need to build and
test in your Private
Workspace.

* How do you verify
that your changes
do not break the
system before you
commit them to the
Repository?

46

Private System Build

» Developer Workspaces have different
requirements.
— The system build can be complicated.

— Full Testing can be slow but you want to
run all of the tests.

» Changes that break the Integration
Build are bad.

+ It can be costly to fix broken builds.

47

Private System Build

+ Build the system using the same mechanisms as

the central integration build, a Private System
Build.

— Should match the integration build.

— Should be quick.

— Should run tests.

— Do this before checking in changes!

— Update to the codeline head before a build.

* Unresolved:

— Testing what you built: Smoke Test

48

12

Task Level Commit

* You want to associate
changes with an
Integration Build.

* How much work
should you do
before checking in
files?

49

Task Level Commit

Smaller tasks are easier to roll back.
Large changes mean more isolation.

A check-in requires some work.

— Build, Test

— It is tempting to batch many small changes.
Issue tracking systems track units of work.
Frequent Commits provide for safety.

50

Task Level Commit (Solution)

» Do one commit per small-grained task.
+ Story, Task, Issue
+ Changes include related tests

PEOS

51

Activity: Build Time Tradeoffs

+ Tradeoffs
» More Testing or Faster Build

52

13

Integration Build

* Whatis done in a
Private Workspace
must be shared with
the world.

* How do you make
sure that the code
base always builds
reliably?

53

Integration Build

People work independently.

Private System Builds validate the system.
Building everything may take a long time.
Testing everything takes a long time.

You want to ensure that the codeline
works.

Environmental differences happen
— Want a canonical definition of “works.”

54

Integration Build

+ Do a centralized build for the entire code base.
— Use automated tools: Cruise Control, SCM tool Triggers, etc.
— Use an Integration Workspace.
— Ideally, deploy.
— When needed, stage long running tests.
« Still Unresolved:
— Testing that the product still works: Smoke Test.
— Make build products available for clients in a Repository.
— Figure out what broke a build: Task Level Commit.

55

Workspaces and Build
(Review)

+ Single Codeline
» Consistent

BUILD
Workspaces d
+ Consistent Builds cals g) Test
(o
INTEGRATE- Upd;’re

56

14

Types of Tests

Unit Test

* A Smoke Test s not
enough to verify that

i =, a module works at a
v.‘ o il low level.
S * How do you test
y
whether a module
[still works after you
S’ make a change?
57 58
Unit Test

Integration identifies problems, but makes
it harder to isolate problems.

Low level testing is time consuming.
Code may be too coupled to Unit Test.

After a change to a module things can
break.

— Check to see if the module still works before
integration

—You can isolate the problems.

59

Unit Test

Develop and run Unit Tests
Almost nothing is too trivial to test
Unit Tests should be:

— Automatic/Self-evaluating
— Fine-grained

— Isolated

— Simple to run

Also known as Programmer Tests

- J.B. Rainsberger

60

15

Smoke Test

* You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.

* How do you verify
that the system still
works after a
change?

61

Smoke Test

+ Exhaustive testing is best for ensuring quality.
* Longer tests imply longer check-ins.
— Less frequent check-ins.
— Baseline more likely to have moved forward.
» People have a need to move forward.
+ Stakeholders have a need for quality and progress.
* (Automated) Test Execution Time is often idle time.

62

Smoke Test

+ Subject each change to a Smoke Test that verifies
that the application has not broken in an obvious
way.

— Before a commit. (after Private System Build)
— During Integration Build

* A Smoke Test is not comprehensive. You will need to
find:

— Problems you think are fixed: Regression Test.
— End to End Test: Integration Test.
— Low level accuracy of interfaces: Unit Test.

63

Smoke Test Example

« Start up application
— Seems trivial
— Can ID issues with
+ Configuration
» Packaging
+ Connectivity with databases

64

16

Integration Test

» End to end test.

» Finds gaps in unit tests.

* During Integration Build.

* Run “feature-level”
integration test before
commit.

+ See: Regression Test.

65

Regression Test
* A Smoke Test is good P . 'ﬂ
— Not comprehensive.
* How do you ensure
that existing code
does not get worse
after you make \
changes? \‘

66

Regression Test (Forces)

« Comprehensive testing takes time.

* It is good practice to add a test whenever
you find a problem.

* When an old problem recurs, you want to
be able to identify when this happened.

67

Regression Test

» Develop Regression Tests based
on:
— Failed test cases.
— Problem Reports.
* Run Regression Tests whenever
you want to validate the system.
* Run these tests as part of an
automated build.
— (nightly or more frequently).

68

17

Testing

» Layers of Tests.
* When to Run. BUILD
+ Balance testing and ’

rate of change. Code (ae) Test
\ scm
INTEGRATE-—Update

69

Types of Tests

70

More than one Codeline

« Stability
— Releases
» Variations
— Maintenance/Fixes

— Customer Specific
Changes

+ Consider options

— Branches sometime
necessary.

7

Codeline Policy

» Active Development
Line, Release Line,
Task Branch (etc)
have different rules.

* How do developers
know how and when
to use each
codeline?

72

18

Codeline Policy

Different codelines:
— Have different needs
— Need different rules.

People may not follow the rules.
The rules need to make sense.
How do you enforce/explain a policy?

73

Codeline Policy

» Define the rules for each codeline as a
Codeline Policy. The policy should be
concise and auditable.

+ Consider tools to enforce the policy.
» Branch on a policy change.

74

Policies: The Tofu Scale
Fim
being released.

— How thoroughly must
changes be reviewed and
tested. Development V soft

— How much impact a change
has on schedules.
— How much a codeline is
changing.
« See Practical Perforce for
more info

« Laura Wingerd
(Perforce Software)

« Consider:
— How close software is to

75

* You want to maintain

Release Line

an Active
Development Line
while supporting an
existing release.
How do you do
maintenance on a
released version
without interfering
with current work?

1¥-€

N
3
a

76

19

Release Line
» A codeline for a released version needs a
Codeline Policy that enforces stability.

» Day-to-day development will move too
slowly if you are trying to always be ready
to ship.

7

Release Line

+ Split maintenance/release
activity between
— Active Development Line (New)
—a Release Line (Fixes).

* Propagate changes to Mainline
as appropriate.

/Release-1 H fixes ‘
‘ /main H Release 1 work

78

Third Party Codeline

» Private Workspaces and
the Repository need the
right versions of external
components. You may
need to modify third party
components.

* How do you coordinate
versions of external
components with your
versions?

79

Third Party Codeline

» Vendor releases do not match your
releases.

+ Sometimes you alter external code (open
source, etc) or apply patches.

80

20

Third Party Codeline

+ Use the same mechanisms as you do for
your code to create a Third Party
Codeline.

» Label the codeline to associate snapshots
with your versions.

81

Third Party Codeline (Structure)

‘ /build H changes H build H changes‘

6

Vendor Vendor
Release 1 Release 2

82

Task Branch

« Some tasks have
intermediate steps that would
disrupt an Active
Development Line.

* How can your team make
multiple, long-term,
overlapping changes to a
codeline without
compromising its
integrity?

83

Task Branch

* Version Management is a
communication mechanism.

+ Generally Mainline is simplest and best.

+ Sometimes only part of a team is
working on a task.

+ Some changes have many steps.
» Branching has overhead.

84

21

Task Branch

Create a Task Branch off of the
Mainline for each activity that has
significant changes for a codeline.
Integrate this codeline back into the
Mainline when done.

Be sure to integrate changes from
the Mainline into this codeline as you
go.

[Compare with Private Versions.]

85

Private Versions

* An Active Development
Line will break if people

check in half-finished
tasks.

* How can you
experiment with
complex changes and
still get the benefits
of version
management?

86

Private Versions

+ Sometimes you may want to checkpoint
during a long, complex change.

* Your version management system
provides the facilities for checkpointing.

* You don’t want to share intermediate
steps.

87

Private Versions

» Provide developers with a mechanism for
checkpointing changes using a simple interface.
* Implement as:
— Private History
— A Private Repository
— A Private Branch
— IDE Support
» [Compare with Task Branch for long lived /joint
efforts.]

88

22

Release Prep Codeline

* You want to maintain

an Active Development
Line while stabilizing
for a release.

How do you stabilize
a codeline for an
imminent release
while allowing new
work to continue on
an active codeline?

89

Release-Prep Codeline (Forces)

* You want to stabilize a codeline:
— so you can ship it.

* You want to work on new work during
stabilization period.

* A code freeze slows things down.
» Branches have overhead.

90

Release Prep Codeline

Branch instead of freeze. Create a
Release Prep Codeline (a branch) when
code is approaching release quality.
Leave the Mainline for active
development.

The Release Prep Codeline becomes
the Release Line (with a stricter policy)
Note: If only a few people are doing
work on the next release, consider a
Task Branch instead.

91

Essential Practices

» Workspace Creation

* Build

+ Continuous Integration
+ Simple Codelines

» Tests

92

23

Resources (Web)

+ SCM Patterns Book & Web Site:
www.scmpatterns.com

* CM Crossroads:
www.cmcrossroads.com
» Brad Appleton’s Sites: a
—acme.bradapp.net
— Blog.bradapp.net

93

Questions?

Resources (Books)

SoPTWARE CONFIGURATION

MANAGEMENT PATTERNS

95

94

24

