
1

SCM for Agile Development

Steve Berczuk

© 2008 Steve Berczuk

© 2008 Steve Berczuk 2

About Me

© 2008 Steve Berczuk 3

Overview

• SCM Concepts

• Motivation

• How to Implement Agile SCM

(overview)

• Essential SCM Patterns and Practices

• Questions

© 2008 Steve Berczuk 4

What: SCM Concepts

• Identification

• Control

• Status Accounting

• Audit & Review

2

© 2008 Steve Berczuk 5

The Role of SCM

(Agile Teams)

• Coordination

• Version Management

• Build Management

• Agile teams need to have the right

amount of configuration “Management”

© 2008 Steve Berczuk 6

Value of SCM

• Agile goals:

– Delivering value
– Eliminate waste

• SCM enables:

– Reliable delivery

– Maintenance &

Support

– Easier change

Tracking

© 2008 Steve Berczuk 7

(Good)

Software Configuration
Management

Is Essential for

Agile Software Development

© 2008 Steve Berczuk 8

Concepts: Workspace

• Everything you need

to develop and test

• Source

• Resources

• Developer,

Integration, etc

3

© 2008 Steve Berczuk 9

Concepts: Codeline

• Definition

• Branch

• Trunk (MAIN)

• Issues:

– How Many?

– Enabling Integration

– Project Rhythm

© 2008 Steve Berczuk 10

Concepts: Tags, Revisions

© 2008 Steve Berczuk 11

Concepts: Repository

• Version

Management

System

• SCM

• Examples:

– Maven Repository

– Subversion

– CVS

© 2008 Steve Berczuk 12

Concepts: Locking Models

• Pessimistic Locking

– Lock, Modify, Unlock

– One editor at a time

– Need to be able to

override locks

4

© 2008 Steve Berczuk 13

Concepts: Locking Models

• Optimistic Locking

– Copy, Modify, Merge

– Allows for

concurrency

© 2008 Steve Berczuk 14

Concepts (Review)

• Features and Value of SCM

• SCM and Version Control

• Codeline & Commit

• Workspace

• Locking Models

© 2008 Steve Berczuk 15

Why SCM?

© 2008 Steve Berczuk 16

Common Problems (I)

• Not Enough Process

– “Builds for me!”

– “Works for me…!”

– “The build is broken

again!”

– Ad-hoc code sharing

5

© 2008 Steve Berczuk 17

Common Problems (II)

• Process Gets in the Way.

– Pre-check-in testing takes

too long

– Code freeze/idle resources

• Long Integration Times at

Project Release.

– “Fixing it” in integration

© 2008 Steve Berczuk 18

Agility and SCM

• Agile Methods emphasize:
– Feedback

– Communication

– Process that adds value

• Agile SCM
– Simple and effective SCM

– Enables development

– Not only for agile teams

• Balance Feedback and Stability

© 2008 Steve Berczuk 19

What is Agile SCM?
• Individuals and Interactions over Processes and Tools

– SCM Tools should support the way that you work, not the other
way around

• Working Software over Comprehensive Documentation
– SCM can automate development policies & processes:

Executable Knowledge over Documented Knowledge

• Customer Collaboration over Contract Negotiation
– SCM should facilitate communication among stakeholders and

help manage expectations

• Responding to Change over Following a Plan
– SCM is about facilitating change, not preventing it

© 2008 Steve Berczuk 20

The Agile SCM Cycle

6

© 2008 Steve Berczuk 21

What: (Agile)SCM Concepts

• Identification
– Repository/Build

Scripts/Tags

• Control
– Iteration Planning

• Status Accounting
– Dashboards

• Audit & Review
– Unit and Acceptance

Testing

© 2008 Steve Berczuk 22

Why? (Review)

• Productivity
– Save Time

– Faster Delivery

• Value

• Balance
– stability

– progress

• Communication &
Coordination

© 2008 Steve Berczuk 23

How

• Environment

• Practices

• Patterns

© 2008 Steve Berczuk 24

Environment

• Organization

• Architecture

• SCM Process

7

© 2008 Steve Berczuk 25

Tools

• Tools Enable

• Process before

Tools

© 2008 Steve Berczuk 26

Key Development Practices

• Codeline Structure

• Private Workspace

• Build

• Test

• Deploy

• (Automate)

© 2008 Steve Berczuk 27

Codeline Structure:

Too Many Branches?

Main

1.0

1.1

1.1.1

Change

Request

© 2008 Steve Berczuk 28

Mainline

• You want to simplify
your codeline
structure and enable
frequent integration.

• How do you keep
the number of
codelines
manageable (and
minimize merging)?

8

© 2008 Steve Berczuk 29

Delayed Integration

© 2008 Steve Berczuk 30

Mainline Tradeoffs

• A Branch is a tool for isolating work.

– Branching can require merging.

– Merging can be difficult.

• Codelines are a logical way to organize work.

• Isolation seems “safe.”

• You will need to integrate everything eventually.

• You want to:

– maximize concurrency.

– minimize problems cause by deferred integration.

© 2008 Steve Berczuk 31

Mainline (Solution)

• When in doubt, do all of your work off of a single Mainline.

• Integrate often.

• Understand why you want to branch, and consider the costs.

• You need to address architecture, code, and tests.

© 2008 Steve Berczuk 32

Active Development Line

• You are developing

on a Mainline but

worry about stability.

• How do you keep a

rapidly evolving

codeline stable

enough to be useful

without slowing

people down?

9

© 2008 Steve Berczuk 33

Fragile Codelines

© 2008 Steve Berczuk 34

Active Development Line

• Use an Active Development Line.

• Have “good enough” check-in policies for.
– More structure where needed.

• Establish practices for an active codeline:
– Doing development: Private Workspace

– Keeping the codeline stable: Smoke Test

• When to consider other approaches:
– Managing maintenance versions: Release Line

– Dealing with potentially tricky changes: Task Branch

– Avoiding code freeze: Release Prep Codeline

© 2008 Steve Berczuk 35

Workspaces and Builds

• Support Testing

Required for Active

Development Line.

• New Person Starting

on a project

• Code, build, and test

• Commit changes

© 2008 Steve Berczuk 36

Private Workspace
• You want to support an

Active Development Line.

• How do you keep current

with a dynamic codeline

and also make progress

without being distracted by

your environment

changing from beneath

you?

10

© 2008 Steve Berczuk 37

Private Workspace
• Frequent integration

– Shows problems sooner.

– Integration problems can disrupt flow.

• Excessive isolation defers problems.

• Shared workspaces can be problematic:

– Sometimes you need different code.

• Parallel work

© 2008 Steve Berczuk 38

Private Workspace

• Create a Private Workspace that contains
everything to build a working system.

– You control when you get updates.

– You can test before committing changes.

• Before integrating your changes:
– Update your workspace.

– Build your workspace.

– Test your code.

• Stay up-to-date!

© 2008 Steve Berczuk 39

Private Workspace Example

• Workspace

– App Server

– Database

Schema

– Code for Web

App

– Test CRS Login

– (Build/Deploy,

Configuration

Tools & Scripts)

© 2008 Steve Berczuk 40

Private Workspace Requires
• Populate the workspace: Repository

• Manage external code: Third Party Codeline

• Build and test your code: Private System Build

• Integrate your changes and test: Integration Build

11

© 2008 Steve Berczuk 41

Repository

• Private Workspace

and Integration Build

need components.

• How do you get the

right versions of the

right components

into a new

workspace?

© 2008 Steve Berczuk 42

Repository

• Many things make up a workspace:
– Code, libraries, scripts.

• You want to be able to easily build a
workspace from nothing.

– New developers

– Integration workspaces

• Components could come from a variety of
sources (3rd Parties, other groups, etc).

• Reproducibility essential to agility.

© 2008 Steve Berczuk 43

Repository
• Have a single point of access for everything.

• Have a mechanism to support easily getting things from the
Repository.

– Install Version Manager Client

– Get Project from Version Management

– Build, Deploy, Configure (Ant target, Maven goal)

– Simple, automated, repeatable process.

• Manage environment differences with configuration.

• Re quired:

– Manage external components:
Third Party Codeline

© 2008 Steve Berczuk 44

Hierarchy of configuration

• Common Settings

• Environment Specific Settings

– Development

– Integration

– Production

• User-specific overrides

• Can be handled in architecture

12

© 2008 Steve Berczuk 45

Builds

• Value Working software

• Builds at various levels:

– Developer

– Integration

– Release

• Build scripts are code!

• Build : “Compile & Test”

• Deploy frequently

© 2008 Steve Berczuk 46

Private System Build

• You need to build and

test in your Private

Workspace.

• How do you verify

that your changes

do not break the

system before you

commit them to the

Repository?

© 2008 Steve Berczuk 47

Private System Build

• Developer Workspaces have different
requirements.

– The system build can be complicated.

– Full Testing can be slow but you want to
run all of the tests.

• Changes that break the Integration
Build are bad.

• It can be costly to fix broken builds.

© 2008 Steve Berczuk 48

Private System Build
• Build the system using the same mechanisms as

the central integration build, a Private System
Build.
– Should match the integration build.

– Should be quick.

– Should run tests.

– Do this before checking in changes!

– Update to the codeline head before a build.

• Unresolved:
– Testing what you built: Smoke Test

13

© 2008 Steve Berczuk 49

Task Level Commit

• You want to associate

changes with an

Integration Build.

• How much work

should you do

before checking in

files?

© 2008 Steve Berczuk 50

Task Level Commit

• Smaller tasks are easier to roll back.

• Large changes mean more isolation.

• A check-in requires some work.

– Build, Test

– It is tempting to batch many small changes.

• Issue tracking systems track units of work.

• Frequent Commits provide for safety.

© 2008 Steve Berczuk 51

Task Level Commit (Solution)

• Do one commit per small-grained task.

• Story, Task, Issue

• Changes include related tests

© 2008 Steve Berczuk 52

Activity: Build Time Tradeoffs

• Tradeoffs

• More Testing or Faster Build

14

© 2008 Steve Berczuk 53

Integration Build

• What is done in a

Private Workspace

must be shared with

the world.

• How do you make

sure that the code

base always builds

reliably?

© 2008 Steve Berczuk 54

Integration Build

• People work independently.

• Private System Builds validate the system.

• Building everything may take a long time.

• Testing everything takes a long time.

• You want to ensure that the codeline

works.

• Environmental differences happen

– Want a canonical definition of “works.”

© 2008 Steve Berczuk 55

Integration Build

• Do a centralized build for the entire code base.

– Use automated tools: Cruise Control, SCM tool Triggers, etc.

– Use an Integration Workspace.

– Ideally, deploy.

– When needed, stage long running tests.

• Still Unresolved:

– Testing that the product still works: Smoke Test.

– Make build products available for clients in a Repository.

– Figure out what broke a build: Task Level Commit.

© 2008 Steve Berczuk 56

Workspaces and Build

(Review)

• Single Codeline

• Consistent

Workspaces

• Consistent Builds

15

© 2008 Steve Berczuk 57

Types of Tests

© 2008 Steve Berczuk 58

Unit Test

• A Smoke Test is not

enough to verify that

a module works at a

low level.

• How do you test

whether a module

still works after you

make a change?

© 2008 Steve Berczuk 59

Unit Test

• Integration identifies problems, but makes
it harder to isolate problems.

• Low level testing is time consuming.

• Code may be too coupled to Unit Test.

• After a change to a module things can
break.

– Check to see if the module still works before
integration

– You can isolate the problems.

© 2008 Steve Berczuk 60

Unit Test

• Develop and run Unit Tests

• Almost nothing is too trivial to test

• Unit Tests should be:

– Automatic/Self-evaluating

– Fine-grained

– Isolated

– Simple to run

• Also known as Programmer Tests
- J.B. Rainsberger

!

!

"

!

16

© 2008 Steve Berczuk 61

Smoke Test

• You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.

• How do you verify
that the system still
works after a
change?

© 2008 Steve Berczuk 62

Smoke Test

• Exhaustive testing is best for ensuring quality.

• Longer tests imply longer check-ins.
– Less frequent check-ins.

– Baseline more likely to have moved forward.

• People have a need to move forward.

• Stakeholders have a need for quality and progress.

• (Automated) Test Execution Time is often idle time.

© 2008 Steve Berczuk 63

Smoke Test

• Subject each change to a Smoke Test that verifies
that the application has not broken in an obvious

way.

– Before a commit. (after Private System Build)

– During Integration Build

• A Smoke Test is not comprehensive. You will need to

find:

– Problems you think are fixed: Regression Test.

– End to End Test: Integration Test.

– Low level accuracy of interfaces: Unit Test.

© 2008 Steve Berczuk 64

Smoke Test Example

• Start up application

– Seems trivial

– Can ID issues with

• Configuration

• Packaging

• Connectivity with databases

17

© 2008 Steve Berczuk 65

Integration Test

• End to end test.

• Finds gaps in unit tests.

• During Integration Build.

• Run “feature-level”

integration test before

commit.

• See: Regression Test.

© 2008 Steve Berczuk 66

Regression Test

• A Smoke Test is good

– Not comprehensive.

• How do you ensure

that existing code

does not get worse

after you make

changes?

© 2008 Steve Berczuk 67

Regression Test (Forces)

• Comprehensive testing takes time.

• It is good practice to add a test whenever

you find a problem.

• When an old problem recurs, you want to

be able to identify when this happened.

© 2008 Steve Berczuk 68

Regression Test

• Develop Regression Tests based
on:

– Failed test cases.

– Problem Reports.

• Run Regression Tests whenever
you want to validate the system.

• Run these tests as part of an
automated build.
– (nightly or more frequently).

18

© 2008 Steve Berczuk 69

Testing

• Layers of Tests.

• When to Run.

• Balance testing and

rate of change.

© 2008 Steve Berczuk 70

Types of Tests

© 2008 Steve Berczuk 71

More than one Codeline

• Stability

– Releases

• Variations

– Maintenance/Fixes

– Customer Specific

Changes

• Consider options

– Branches sometime

necessary.

© 2008 Steve Berczuk 72

Codeline Policy

• Active Development

Line, Release Line,

Task Branch (etc)

have different rules.

• How do developers

know how and when

to use each

codeline?

19

© 2008 Steve Berczuk 73

Codeline Policy

• Different codelines:

– Have different needs

– Need different rules.

• People may not follow the rules.

• The rules need to make sense.

• How do you enforce/explain a policy?

© 2008 Steve Berczuk 74

Codeline Policy

• Define the rules for each codeline as a

Codeline Policy. The policy should be

concise and auditable.

• Consider tools to enforce the policy.

• Branch on a policy change.

© 2008 Steve Berczuk 75

Policies: The Tofu Scale
• Laura Wingerd

(Perforce Software)

• Consider:

– How close software is to
being released.

– How thoroughly must
changes be reviewed and
tested.

– How much impact a change
has on schedules.

– How much a codeline is
changing.

• See Practical Perforce for
more info

Release

Mainline

Development

Firm

Soft

© 2008 Steve Berczuk 76

Release Line

• You want to maintain

an Active

Development Line

while supporting an

existing release.

• How do you do

maintenance on a

released version

without interfering

with current work?

20

© 2008 Steve Berczuk 77

Release Line

• A codeline for a released version needs a

Codeline Policy that enforces stability.

• Day-to-day development will move too

slowly if you are trying to always be ready

to ship.

© 2008 Steve Berczuk 78

Release Line

• Split maintenance/release

activity between

– Active Development Line (New)

– a Release Line (Fixes).

• Propagate changes to Mainline

as appropriate.

/main Release 1 work

/Release-1 fixes

© 2008 Steve Berczuk 79

Third Party Codeline
• Private Workspaces and

the Repository need the
right versions of external
components. You may
need to modify third party
components.

• How do you coordinate
versions of external
components with your
versions?

© 2008 Steve Berczuk 80

Third Party Codeline

• Vendor releases do not match your

releases.

• Sometimes you alter external code (open

source, etc) or apply patches.

21

© 2008 Steve Berczuk 81

Third Party Codeline

• Use the same mechanisms as you do for

your code to create a Third Party

Codeline.

• Label the codeline to associate snapshots

with your versions.

© 2008 Steve Berczuk 82

Third Party Codeline (Structure)

/vendor

/build changes build changes

Vendor

Release 1

Vendor

Release 2

© 2008 Steve Berczuk 83

Task Branch
• Some tasks have

intermediate steps that would

disrupt an Active

Development Line.

• How can your team make

multiple, long-term,

overlapping changes to a

codeline without

compromising its

integrity?

© 2008 Steve Berczuk 84

Task Branch

• Version Management is a

communication mechanism.

• Generally Mainline is simplest and best.

• Sometimes only part of a team is

working on a task.

• Some changes have many steps.

• Branching has overhead.

22

© 2008 Steve Berczuk 85

Task Branch

• Create a Task Branch off of the
Mainline for each activity that has
significant changes for a codeline.

• Integrate this codeline back into the
Mainline when done.

• Be sure to integrate changes from
the Mainline into this codeline as you
go.

• [Compare with Private Versions.]

© 2008 Steve Berczuk 86

Private Versions

• An Active Development
Line will break if people
check in half-finished
tasks.

• How can you
experiment with
complex changes and
still get the benefits
of version
management?

© 2008 Steve Berczuk 87

Private Versions

• Sometimes you may want to checkpoint

during a long, complex change.

• Your version management system

provides the facilities for checkpointing.

• You don’t want to share intermediate

steps.

© 2008 Steve Berczuk 88

Private Versions

• Provide developers with a mechanism for

checkpointing changes using a simple interface.

• Implement as:

– Private History

– A Private Repository

– A Private Branch

– IDE Support

• [Compare with Task Branch for long lived /joint

efforts.]

23

© 2008 Steve Berczuk 89

Release Prep Codeline

• You want to maintain

an Active Development

Line while stabilizing

for a release.

• How do you stabilize

a codeline for an

imminent release

while allowing new

work to continue on

an active codeline?

© 2008 Steve Berczuk 90

Release-Prep Codeline (Forces)

• You want to stabilize a codeline:

– so you can ship it.

• You want to work on new work during

stabilization period.

• A code freeze slows things down.

• Branches have overhead.

© 2008 Steve Berczuk 91

Release Prep Codeline

• Branch instead of freeze. Create a
Release Prep Codeline (a branch) when
code is approaching release quality.

• Leave the Mainline for active
development.

• The Release Prep Codeline becomes
the Release Line (with a stricter policy)

• Note: If only a few people are doing
work on the next release, consider a
Task Branch instead.

© 2008 Steve Berczuk 92

Essential Practices

• Workspace Creation

• Build

• Continuous Integration

• Simple Codelines

• Tests

24

© 2008 Steve Berczuk 93

Resources (Web)

• SCM Patterns Book & Web Site:
www.scmpatterns.com

• CM Crossroads:
www.cmcrossroads.com

• Brad Appleton’s Sites: a
– acme.bradapp.net

– Blog.bradapp.net

© 2008 Steve Berczuk 94

Questions?

© 2008 Steve Berczuk 95

Resources (Books)

