
1

Developer Workspaces

Enable Agile Teams

Steve Berczuk

Cyrus Innovation
New England Agile Bazaar

March 2008

About Me

• Software Developer

• Certified Scrum Master

• Author (SCM Patterns Book, CM Crossroads)

• Technical Lead, Cyrus Innovation (Boston)

• More Info
– www.berczuk.com

– www.scmpatterns.com

– www.cyrusinnovation.com

– steve@berczuk.com

About Cyrus Innovation

• Offices in Boston and New York City

• Software Development

– Agile Teams

• Agile Coaching and Training

Common Problems

• Not Enough Process:

– “Builds for me…”

– “Works for me!”

– “The build is broken again!”

– “What branch do I use?”

• Process Gets in the Way:

– Long Commit Times

– Serialized Commits

– Code Freezes

• Long integration times at end of
project

– “Fixing it” in integration

• Silos of Knowledge

– “How does this code work?”

Agile Software Development

• What it is

• Why you care

Agile Manifesto

www.agilemanifesto.org
• Individuals and Interactions over Processes and Tools

• Working Software over Comprehensive Documentation

• Customer Collaboration over Contract Negotiation

• Responding to Change over Following a Plan

• People build software!

• Use the right tools and processes.

• Focus on things that add direct value.

• Adapt to change; acknowledge that change happens.

• (Common Sense Applied)



2

Benefits of Agile Methods

• Easier to manage scope

• Build the right thing

• Deliver value more predictably

• Agile methods
– Emphasize feedback and communication.

– Avoid process steps that don’t add value.

– Address issues, don’t just add processes for comfort.

SCM

• SCM enables agility

– Reproducible Workspaces

– Feedback through builds*

• Concepts in context:

– Branches, labels, tags

– Builds

– Workspaces

• Different levels of scale

Agile Context

• SCM is Part of the

Puzzle:

– Architecture

– Software

Configuration

Management

– QA/Testing

– Culture/Organization

The Goal: Working software that delivers value.

The SCM Pattern Language
Mainline

Private 

Workspace

Active Development

 Line

Integration

Build

Private 

System Build

Repository

Third Party

Codeline

Task Level

Commit

Release Line
Private

 Versions
Task Branch

Release-Prep

Codeline

Codeline

Policy

Regression
Test

Unit Test

Smoke Test

Build TestCollaborate

What is a Workspace?

• Everything you need to code and test.

• Includes:

– Source

– Databases

– Typical Data

Role of Workspaces in Agile

Teams

• Work Quickly and Independently

– But don’t interrupt anyone else

• Collective Ownership

– Get started quickly

• Feedback

– Create similar environments for
developers, testers, integration



3

Private Workspace
• You want to support an

Active Development Line.

• How do you keep current

with a dynamic codeline
and also make progress

without being distracted by

your environment

changing from beneath

you?

Private Workspace

• Create a Private Workspace that contains everything you
need to build a working system.
– You control when you get updates.

• Before integrating your changes:
– Update your workspace.

– Build your workspace and Test your code and the system.
(Private System Build)

• (Defer additional validations to the Integration Build)

• Have an automated way to create workspaces from a
repository. (Repository)

Private Workspace Example

• Workspace

– App Server

– Database

Schema

– Code for Web

App

– Test CRS Login

– (Build/Deploy

and

Configuration

Tools & Scripts)

Repository

• Private Workspace

and Integration Build

need components.

• How do you get the

right versions of the

right components

into a new

workspace?

Repository (Solution)
• Have a single point of access for everything.

– Use this mechanism at all levels (dev, integration build, etc)

– No hard coded information.

• Have a mechanism to support easily getting things from the
Repository.

– Install Version Manager Client

– Get Project from Version Management

– Build, Deploy, Configure (Ant target, Maven goal)

– Simple, repeatable process.

• Still to do:

– Manage external components:
Third Party Codeline

Repository

Svn

Repository

Maven 

Repository

Workspace

???



4

Creating Workspaces

• Simple and Automated

– Install SCM Client and Build Tool

– Checkout project file

– Run “workspace” target
• Gets files and builds

• Tools
– Ant, Maven

– Scripts

• Factor specifics into configuration

– No “hard coding”

Private Workspace +

Repository

• Add a new developer quickly.

• Create test environments.

• Create build environments.

• Reproduce problems quickly.

• Have an implicit check for inflexible

configurations.

Private System Build

• You need to build to

test what is in your

Private Workspace.

• How do you verify

that your changes

do not break the

system before you

commit them to the

Repository?

Private System Build (Forces)
• Developer Workspaces have different

requirements than the system integration

workspace.

• The system build can be complicated.

• Checking things in that break the

Integration Build is bad.

Private System Build (Solution)

• Build the system using the same
mechanisms as the central integration build,
a Private System Build.

– This mechanism should match the integration
build.

– Do this before checking in changes!

– Update to the codeline head before a build.

• Unresolved:
– Testing what you built: Smoke Test

Integration Build

• What is done in a

Private Workspace

must be shared with

the world.

• How do you make

sure that the code

base always builds

reliably?



5

Integration Build (Forces)
• People do work independently.

• Private System Builds are a way to check

the build.

• Building everything may take a long time.

• You want to ensure that what is checked-

in works.

Integration Build (Solution)

• Do a centralized build for the entire code
base.

– Use automated tools: Cruise Control, SCM tool
Triggers, etc

• Still Unresolved:
– Testing that the product of the build still works: Smoke

Test

– Build products may need to be available for clients to
check out

– Figure out what broke a build: Task Level Commit

… + Build and Test Patterns

• Enable rapid change

• Reduce risk for broken builds

• Debug deployment process

Creating an Agile SCM

Environment
• Decide on a goal.

• Choose an appropriate Codeline
Structure

– set up the related policy.

• Create a process to set up
workspaces

– Private

– Integration

• Build & Deploy is an Iteration 0
Story.

• Integrate frequently at all levels
– Developer Workspace

– Integration Build

• Deploy frequently.

• Test.

Agile Results

• More frequent

Deliveries

• Fewer Surprises

• Happier Clients


