P YOUR| EXPERTISE

Collaborate, Build, Test, Deploy:
Essential SCM Practices for
Teams

Steve Berczuk
September 28, 2005
SD Best Practices

SD_E§RSTICES COMFERENCE & EXPO 2005

OCUR|EXPERTISE

Goals

« Discuss some common problems

» Learn how taking a “Big Picture View” of SCM
will you make your process more effective

« Understand how working with an Active
Development Line model simplifies your process

SQEEEETICES COMFERENCE & EXPO 2005

UR EXPERTISE

» Background
— SCM and The Development Process
— Patterns and SCM Pattern Languages

— Software Configuration Management
Concepts

« SCM Patterns
* Questions

SD_E§RSTICES COMFERENCE & EXPO 2005

CEVELOP YOUR| EXPERTISE

_About Me

» Software Developer, Architect, Consultant,
Author. Currently at Iron Mountain Digital

 Startup and established company
experience

« Systems ranging from travel web sites, to
enterprise systems, to space science
systems

¢ Agile and Iterative Development

SQEEEETICES COMFERENCE & EXPO 20065

") i OCEVELOP YOUR EXPERTISE ‘ * OCEVELOP YOUR EXPERTISE
Foundations The Context
¢ SCMis Part of the
Puzzle:
— Architecture
— Software Configuration
Management
— Culture/Organization
The Goal: Working software that delivers value.
sg_EEﬁSTICES COMFERENCE A& EXPO 20065 sg_EEﬁSTICES COMFERENCE & EXPO 20065
" _*'.. ocEvVELOP YouR EXPERTISE _*'.- ocEvVELOP YouR EXPERTISE
Problems Solution
+ Not Enough Process: An Agile Approach to SCM
— “Builds for me...” . -
_ Works for mel” - Efffectlve (.not Unpr.od.uctwe) S(?M
— “The build is broken again!” — Agile Manifesto Principles applied to SCM
— “What branch do | work off of?” e The SCM Pattern Language
* Process Gets in the Way: — A Pattern Language to help you realize an
— Pre-check-in testing takes too long Agile SCM Environment
— Code Freezes
 Long integration times at end of project
— “Fixing it” in integration
SQ-BEgSTICES COMFERENCE & EXPO 2005

cEvVELOPR

Tradiibal View of SCM

YOUR EXPERTISE

« Configuration
Identification

¢ Configuration Control
 Status Accounting

* Audit & Review

¢ Build Management

¢ Process
Management, etc

SD_EER('STICES COMFERENCE & EXPO 2005

cEVELOP

What is Agile SCM?

YOUR EXPERTISE

« Individuals and Interactions over Processes and Tools

— SCM Tools should support the way that you work, not the other
way around

» Working Software over Comprehensive Documentation

— SCM can automate development policies & processes:
Executable Knowledge over Documented Knowledge

» Customer Collaboration over Contract Negotiation

— SCM should facilitate communication among stakeholders and
help manage expectations

* Responding to Change over Following a Plan
— SCMis about facilitating change, not preventing it

SQ'EgEETICES CONFERENCE & EXPoO 2008

-\ L i oEvELOP

i‘fective SCM

YOUR EXPERTISE

¢ Who?
¢ What?
* When?
¢ Where?
¢ Why?
e How?

Think about the entire value chain.

SD_EER('STICES COMFERENCE & EXPO 2005

= A |

=
L, =Nk i DEVELOP YOUR|EXPERTISE

What Agile SCM is Not

 Lack of process
* Chaos
¢ Lack of control

Agile SCM is about having an Effective SCM
process that helps get work done.

SQ'EgEETICES CONFERENCE & EXPO 2008

cEvVELOPR

he Agile SCM Cycle

Resynch
Frequently
Code Build/Integrate

Commit ; Test

YOUR EXPERTISE

' B |

cEVELOP

CM Concepts

YOUR EXPERTISE

cEvVELOPR

6st of Change

Cost-of-Change Curve

YOUR EXPERTISE

Wl Traditional Development (Boehm)

ﬂ W xP (Beesy

Cost of [l Agite (Cockburn, Ambler)

Change
(Due to
rework)

“Flat”

Requirerments Analysis/Design Programeming Testing Deployment
3 i

Time |~

SCM a

o=

san Enabling Tool

CEVELOP YOUR| EXPERTISE

* SCM enables:
— Increased productivity

— Enhanced responsiveness
to customers

— Increased quality

* SCM gives you:
— Reproducibility
— Integrity
— Consistency
— Coordination

+ SCM done poorly can:
* Slow down development
* Frustrate developers
« Limit customer options

COMFERENCE & EXPO 2005

e BE R rices

EXPERTISE

8 &) oo

\ DCEVELOP YOUR

AIternté Definition of SCM

* SCM is a set of structures and actions that
enable you to build systems in repeatable,
agile fashion while improving quality and
helping your customers feel more
confident.

« SCM facilitates frequent feedback on build
quality and product suitability.

SD_EER('STICES COMFERENCE & EXPO 2005

P YOUR| EXPERTISE

» Codeline/Branch
» Versioning Concepts
— Configuration
— Version
— Revision
— Label
* Workspace

SQ'EgEETICES CONFERENCE & EXPoO 2008

EaE -

EXPERTISE

DCEVELOP YOUR

\

Coré CM Practices

« Frequent feedback on build quality and
product suitability through:
— Version Management
— Release Management
— Build Management
— Unit & Regression Testing

SD_EER('STICES COMFERENCE & EXPO 2005

e i CEVELOP YOUR| EXPERTISE

' Codeline

¢ A codeline contains every version of every
artifact over one evolutionary path.

SQ'EgEETICES CONFERENCE & EXPO 2008

e

cEvVELOPR

Branches

YOUR EXPERTISE

¢ Branch: A codeline that contains work that derives
(and diverges) from another codeline.

* Branch of afile: A revision of a file that uses the trunk
revision as a starting point.

/main O

SD_E§RSTICES COMFERENCE & EXPO 2005

\ i DEVELOP YOUR|EXPERTISE

Definition: Workspace

 Everything you need to build an application:
— Code
— Scripts
— Database resources, etc

SQEEEETICES COMFERENCE & EXPO 2005

\ s i DEVELOP YOUR EXPERTISE

Versions, Revisions, Labels;

* Revision: An element at a point in time

« Configuration: A snapshot of the codeline at a
point in time

» Version: A labeled configuration

V1 V2 V3

COMFERENCE & EXPO 2005

S BER L ices

R e g i
g TS i DEVELOP YOUR|EXPERTISE

Creating an Agile SCM Environment

Decide on a goal
Choose an appropriate Codeline Structure and set up
the related policy
» Create a process to set up workspaces
— Private
— Integration
* Build & Deploy is an Iteration 0 Story
« Integrate frequently at all levels
— Developer Workspace
— Integration Build
» Deploy frequently
Test

SQEEEETICES COMFERENCE & EXPO 20065

UR| EXPERTISE \ . v OF YOUR| EXPERTISE

CoIIaborate/Bund/Test The SCM Pattern Language

» Collaboration Patterns
— Workspaces
— Codelines
— Unit of Work

« Build Patterns

Integration Private
Build [System Build|

e Test Patterns

-UnitTesl -Reqr'jzf""
SQEERETICES COMFERENCE A& EXPO 20065 SQEERETICES COMFERENCE & EXPO 20065

uR

A Word about Context

EXPERTISE

OCUR|EXPERTISE

What are Patterns and

Pattern Languages?
i ; . * Smoke Test
A pattern is a solution to a problem in a “completes” Active

context Development Line
ine .
« Patterns capture common knowledge * Smoke Test applies
.] in the context of
 Pattern languages guide you in the _
Line

patterns e Arrows point from
. oo context to the “next”
— Each pattern is applied in the correct way at L_Unﬂ;stj M pattern
the correct time

Active Development
process of building something using
sD'E&EE‘HCES COMFERENCE & EXPO 2005 sD'E&EE‘HCES COMFERENCE & EXPO 2005

=% i a i
NE .

- BEVELOEP

]

YOUR EXPERTISE

Workspace Patterns

Private Workspace

|

Private System
Build

Integration
Build

Repository

Third Party
Codeline

Smoke Test
Unit Test Regression Test

cEVELOP

Mainline

YOUR EXPERTISE

* You want to simplify
your codeline
structure.

¢ How do you keep
the number of
codelines
manageable (and
minimize merging)?

- DCEVELOP YOUR| EXPERTISE

Codeline Patterns

o () W
g T T WA i cEvELOPR

YOUR EXPERTISE

Mainline '(Forces & Tradeoffs)

* A Branch is a useful tool for isolating yourself
from change.

« Branching can require merging, which can be
difficult.

e Separate codelines seem like a logical way to
organize work.

* You will need to integrate with everyone’s work.

¢ You want to maximize concurrency while
minimizing problems cause by deferred
integration.

\ i DCEVELOP YOUR

Codeline Structure Issues

EXPERTISE

EaE -

« How many codelines should you be
working from?

* What should the rules be for check-ins?

» Codelines are the integration point for
everyone’s work.

» Codeline structure determines the rhythm
of the project.

SD_EER('STICES COMFERENCE & EXPO 2005

CEVELOP YOUR

MaiI—ie (Unresolved)

EXPERTISE

= e

« Simplicity with speed and enough stability:
Active Development Line

Active Development
Line
sD—E&EETICES COMFERENCE & EXPO 2005

]
EXPERTISE

EaE -

\ i DCEVELOP YOUR

Mainline (Solution)

* When in doubt, do all of your work off of a
single Mainline.

=
=

S BER L ices

COMFERENCE & EXPO 2005

R A WA

= 3
BNt i DEVELOP YOUR|EXPERTISE

Active —Development Line

* You are developing
on a Mainline.

¢ How do you keep a
rapidly evolving
codeline stable
enough to be useful
(but not impede
progress)?

SQ'EgEETICES CONFERENCE & EXPO 2008

v_l:-'l w:— L *,' i

\ 3 i cEvVELOPR

Active Development Line
(Forces & Tradeoffs)

* A Mainline is a synchronization point.

* More frequent check-ins are good.

« A bad check-in affects everyone.

If testing takes too long: Fewer check-ins:
— Human Nature

— Time

Fewer check-ins slow a project’s pulse.

SD_EER(!TICES COMFERENCE & EXPO 2005

\ 2 i DEVELOP YOUR|EXPERTISE

Active Development Line
(Solution)

* Use an Active Development Line.

« Have check-in policies suitable for a “good
enough” codeline.

SQ'EEE(!TICES CONFERENCE & EXPO 2005

cEvVELOPR

| ase Shift

YOUR EXPERTISE

¢ Long running tests increase the likelihood of
phase shift.

Your Test passes here Your Test Would
Fail Now

You Edit You Test
They Edit

sRBERrces

COMFERENCE & EXPO 2005

= .y N b W
Sl M- E i DEVELOP YOUR|EXPERTISE

Active Development Line
(Unresolved)

« Doing development: Private Workspace

» Keeping the codeline stable: Smoke Test

* Managing maintenance versions: Release Line

« Dealing with potentially tricky changes: Task Branch
« Avoiding code freeze: Release Prep Codeline

Active Development

N N Release Prep
Private Workspace Lf‘fﬂ'l—‘ L_Cﬂ'ﬁf—‘ Task Branch

SQ'EEE(!TICES CONFERENCE & EXPO 2005

10

e ol

DCEVELOP YOUR

EXPERTISE

Private Workspace

* You want to support an
Active Development
Line.

¢ How do you keep
current with a dynamic
codeline and also
make progress without
being distracted by
your environment
changing from
beneath you?

o = T — g
- \5_‘- \ E i CEVELOP YOUR|EXPERTISE

Private Workspace (Solution)

 Create a Private Workspace that contains
everything you need to build a working
system. You control when you get
updates.

» Before integrating your changes:
— Update
— Build
- Test

Private Workspace
(Forces & Tradeoffs)

« Frequent integration avoids working with
old code.

» People work in discrete steps: Integration
can never be “continuous.”

¢ Sometimes you need different code.

* Too much isolation makes life difficult for
all.

EXPERTISE

CEVELOP YOUR| EXPERTISE

Private Workspace Example

» Workspace

— App Server

— Database
Schema

— Code for Web
App

— Test CRS Login

— (Build/Deploy
and
Configuration
Tools & Scripts)

11

DCEVELOP YOUR

Private Wdrkspace (Unresolved)

EXPERTISE

& e e

Populate the workspace: Repository

Manage external code: Third Party Codeline
Build and test your code: Private System Build
Integrate your changes with others: Integration

Build
Active Development
Line
Private
‘Workspace

Third Party . Integration Private System

s2BERT

o COMFERENCE & EXPO 2006
TICES

£, .y N i s
3 Sl M- PR B rrcer—rewh

Repository (Forces & Tradeoffs)

EXPERTISE

» Many things make up a workspace: code,
libraries, scripts.

* You want to be able to easily build a
workspace from nothing.

» These components could come from a
variety of sources (3 Parties, other
groups, etc).

SQEEEETICES COMFERENCE & EXPO 2005

DCEVELOP YOUR

_Repository

EXPERTISE

* Private Workspace
and Integration Build
need components. i

* How do you get the I.\-
right versions of the &= & &
right components L
into a new
workspace?

SD_E§RSTICES COMFERENCE & EXPO 2005

CEVELOP YOUR| EXPERTISE

Repdsitory (Solution)

» Have a single point of access for
everything.

* Have a mechanism to support easily
getting things from the Repository.

SQEEEETICES COMFERENCE & EXPO 20065

12

- DEVELOP YOUR| EXPERTISE

Mpig 0 Repository to
Workspace

/Repository

Iworkspace

/3Party

lempA I /cmpB I

IprojectA

Isrc i

SQEER('STICES COMFERENCE & EXPO 2005

CEVELOP YOUR| EXPERTISE

“1

Reositry (Unresolved)

] P T“F:_:- 1‘ *

» Manage external components: Third Party
Codeline

Private Integration
Workspace Build

Repository

Third Party
Codeline
sD—E&EETICES COMFERENCE & EXPO 2005

YOUR EXPERTISE

=\ oEvELOP

Repbsitory Example

¢ Do this: « Not this:
— Install Version — Follow manual
Manager Client process

— Copy files from
Version Management someone who has a
— Build, Deploy, working system
Configure (Ant target, - ..
Maven goal)

— Get Project from

SD_EER('STICES COMFERENCE & EXPO 2005

& T e e
(- § . :

Dimensions Of Testing

YOUR EXPERTISE

cEVELOP

Authorship
— Who writes the test?
« Origin
—When do you write the tests?
e Purpose

* |Isolation
— How Isolated is the component that you test?

SQ'EgEETICES CONFERENCE & EXPO 2008

13

cEvVELOPR

YOUR EXPERTISE

Tyes of Tests

Common Name | Author Created Isolation | Purpose
Unit/Programmer | Developer During Unit High Testing
Dev functional
components
Smoke Developer “Integration” Low Verify
(Integration) QA minimal
operation.
Regression Support Post Release | Low Verify that
QA problems do
Developer not resurface

SD_EER(!TICES COMFERENCE & EXPO 2005

YOUR EXPERTISE

(Forces & Tradeoffs)

» Exhaustive testing is best for ensuring
quality.

* Longer tests imply longer check-ins
— Less frequent check-ins.
— Baseline more likely to have moved forward.

SQ'EEE(!TICES CONFERENCE & EXPO 2005

cEvVELOPR

| Soke Test

YOUR EXPERTISE

* You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.

¢ How do you verify
that the system still
works after a
change?

SD_EER(!TICES COMFERENCE & EXPO 2005

A T S i
Sl M- \ *_‘!’ i OCEVELOP YOUR|EXPERTISE

Smoke Test (Solution)

» Subject each build to a Smoke Test that
verifies that the application has not broken
in an obvious way.

SQ'EEE(!TICES CONFERENCE & EXPO 2005

14

DCEVELOP YOUR| EXPERTISE

Ske_Test (Unresolved)

Active Development
Line
Private System Integration
Build Build

* A Smoke Test is not
comprehensive. You
will need to find:

— Problems you think are
fixed: Regression Test

— Low level accuracy of
interfaces: Unit Test

5 Regression
Unit Test Test
sp Bl :
D—EE?(‘!—I—ICES COMFERENCE & EXPO 2005

= T 3 i
.‘-.- g \5_‘- \ E i CEVELOP YOUR|EXPERTISE

Unit Test _(orces & Tradeoffs)

« Integration identifies problems, but makes
it harder to isolate problems.

* Low level testing is time consuming.

* When you make a change to a module
you want to check to see if the module still

works before integration so that you can
isolate the problems.

DCEVELOP YOUR

_ nit Test

EXPERTISE

¢ A Smoke Test is not
enough to verify that
a module works at a
low level.

¢ How do you test
whether a module
still works after you
make a change?

e

CEVELOP YOUR

EXPERTISE

e :
Unit Test (Solution)
» Develop and run Unit Tests
» Unit Tests should be:

— Automatic/Self-evaluating

— Fine-grained

— Isolated

— Simple to run

Smoke Test

Unit Test

¢ Also known as Programmer Tests

- J.B. Rainsberger

15

EaE e |

P YOUR| EXPERTISE

Régression Test

* A Smoke Test is good
but not
comprehensive.

e How do you ensure
that existing code
does not get worse
after you make
changes?

SD_EER('STICES COMFERENCE & EXPO 2005

= e

CEVELOP YOUR

Regreséion Test (Solution)

EXPERTISE

» Develop Regression Tests based
on test cases that the system
has failed in the past.

* Run Regression Tests whenever
you want to validate the system.

Smoke Test

Regression
Test

SQ'EgEETICES CONFERENCE & EXPoO 2008

o "‘P{;_ “. e R e —T o
Regression Tes
(Forces & Tradeoffs)

« Comprehensive testing takes time.

* It is good practice to add a test whenever
you find a problem.

¢ When an old problem recurs, you want to
be able to identify when this happened.

EXPERTISE

SD_EER('STICES COMFERENCE & EXPO 2005

e

CEVELOP YOUR

Release Line

EXPERTISE

* You want to maintain
an Active
Development Line.

¢ How do you do
maintenance on a
released version
without interfering
with current work?

SQ'EgEETICES CONFERENCE & EXPO 2008

16

Rélease Line
(Forces & Tradeoffs)

* A codeline for a released version needs a
Codeline Policy that enforces stability.

» Day-to-day development will move too
slowly if you are trying to always be ready
to ship.

YOUR EXPERTISE

CEVELOP YOUR

Private System Build

EXPERTISE

O e [‘\ e

* You need to build to
test what is in your
Private Workspace.

¢ How do you verify
that your changes
do not break the
system before you
commit them to the
Repository?

!- i DCEVELOP YOUR| EXPERTISE

Release Line (Solution)

» Split maintenance/release
activity from the Active
Development Line and into a
Release Line.

« Allow the line to progress on its
own for fixes.

/Release-1 H fixes ‘
‘ /main H Release 1 work

Active
Development
Line

Release Line

EXPERTISE

A ":‘;1_:“?- ‘\ = e CEvVELOP YounR
Private System Build
(Forces & Tradeoffs)
» Developer Workspaces have different

requirements than the system integration
workspace.

* The system build can be complicated.

» Checking things in that break the
Integration Build is bad.

17

g '“5‘ ‘

UR EXPERTISE

Prlvate System BUIld (Solutlon)

 Build the system using the same
mechanisms as the central integration
build, a Private System Build.

» This mechanism should match the
integration build.

* Do this before checking in changes!

« Update to the codeline head before a
build.

o T UR|EXPERTISE

Private System Build

(Unresolved)
« Testing what you built: Smoke Test

Private
Workspace
Private System
Build
SD-BERE-I—ICES COMFERENCE & EXPO 2006

P YOUR| EXPERTISE

* Whatis done ina
Private Workspace
must be shared with
the world.

e How do you make
sure that the code
base always builds
reliably?

fOUR| EXPERTISE

“Integration Build
(Forces & Tradeoffs)
» People do work independently.

Private System Builds are a way to check
the build.

Building everything may take a long time.

You want to ensure that what is checked-
in works.

18

DCEVELOP YOUR

Integraﬁn Build (Solution)

EXPERTISE

* Do a centralized build for the entire code
base.

28
Tar _’Eﬁ-"{%

SeBERT rices

COMFERENCE & EXPO 2005

UR| EXPERTISE

* You need to
associate changes
with an Integration
Build.

« How much work
should you do
before checking in
files?

DCEVELOP YOUR

Integratio_n Build (Unresolved)

Private
Workspace
Integration
Build
to check out
« Figure out what broke a @J tSTke/TesiI
build: Task Level Commit

Task Level
Commit
sp Bl ;
D—BE?(‘!—I—ICES COMFERENCE & EXPO 2005

EXPERTISE

T e [S _ e

« Testing that the product
of the build still works:
Smoke Test

¢ Build products may need
to be available for clients

e |

CEVELOP YOUR

eel Commit

EXPERTISE

5‘-‘

Task
(Forces & Tradeoffs)

The smaller the task, the easier it is to roll
back.

¢ A check-in requires some work.

It is tempting to make many small changes
per check-in.

* You may have an issue tracking system
that identifies units of work.

19

DCEVELOP YOUR

Task Level Commit (Solution)

EXPERTISE

* Do one commit per small-grained task.

i

"

COMFERENCE & EXPO 2005

S BER L ices

Cdline Policy
(Forces & Tradeoffs)

» Different codelines have different needs,
and different rules.

EXPERTISE

=\ B |

* You need documentation. (But how
much?)
* How do you explain a policy?

TRUPR R

P YOUR| EXPERTISE

Céeline Policy

« Active Development
Line and Release
Line (etc) need to
have different rules.

* How do developers
know how and when
to use each
codeline?

ERE e P |

CEVELOP YOUR

Codeline Policy (Solution)

EXPERTISE

* Define the rules for each codeline as a
Codeline Policy. The policy should be
concise and auditable.

» Consider tools to enforce the policy.

Active
Development
Line

Private
Versions

Release Prep
Codeline

Release Line Task Branch

Codeline
sQ—BEggTICES COMFERENCE & EXPO 20065

20

!- i DCEVELOP YOUR| EXPERTISE

Release Prep Codeline

¢ You want to maintain
an Active Development
Line.

* How do you stabilize
a codeline for an
imminent release
while allowing new
work to continue on
an active codeline?

T = [l ceveior voun|exrenrise
Release Prep Codeline
(Solution)

» Branch instead of freeze. Create a
Release Prep Codeline (a branch) when
code is approaching release quality.

* Leave the Mainline for active
development.

e The Release Prep Codeline becomes
the Release Line (with a stricter policy)

« Note: If only a few people are doing
work on the next release, consider a
Task Branch instead.

Active
Development
Line

Release Prep
Codeline

Release-Prep Codeline
(Forces & Tradeoffs)

* You want to stabilize a codeline so you
can ship it.

* A code freeze slows things down too
much.

* Branches have overhead.

S ' P |

CEVELOP YOUR| EXPERTISE

Tird Party Codeline

« Private Workspaces
and the Repository
need the right
versions of external
components.

¢ How do you
coordinate versions
of external
components with
your versions?

21

- b
-‘ = _!5‘- \ pEVELOP

- B | vour|exrenTise
Third Party Codeline
(Forces & Tradeoffs)

* Vendor releases do not match your
releases.

» Sometimes you alter external code (open
source, etc) or apply patches.

X . i W
A'J. - *’ 1 DEVELOP YOUR EXPERTISE

Third Party Codeline (Structure)

‘ /build H changes H build H changes‘

O

))

1" Vendor 1 Vendor
Release 1 Release 2

e

DCEVELOP YOUR| EXPERTISE

Thir arty Codeline (Solution)

¢ Use the same mechanisms as you do for
your code to create a Third Party
Codeline.

« Label the codeline to associate snapshots

with your versions.
Repository

Private
Workspace
Third Party
Codeline
SD-BER(!TICES COMFERENCE & EXPO 2006

cEVELOP

Tsk Branch

YOUR EXPERTISE

* Some tasks have
intermediate steps that
would disrupt an Active
Development Line.

* How can your team
make multiple, long-
term, overlapping
changes to a codeline
without compromising
its integrity?

22

T e [S _élﬁ' i

DCEVELOP

YOUR EXPERTISE

DEVELOP YOUR

EXPERTISE

Tsk Branch Tak Banch (Solution)
(Forces & Tradeoffs)

* Create a Task Branch off of the

« Version Management is a communication Mainline for each activity that has
mechanism. significant changes for a codeline. De\l;-\e(ig‘;;?nent
« Sometimes only part of a team is working * Integrate this codeline back into the tine
on a task. Mainline When done.
« Be sure to integrate changes from
 Some changes have many steps. the Mainline into this codeline as you
» Branching has overhead. go.

¢ [Compare with Private Versions.]

P YOUR| EXPERTISE

CEVELOP YOUR| EXPERTISE

Pri_vte Versions
(Forces & Tradeoffs)

« An Active Development ¢ Sometimes you may want to checkpoint
Line will break if people an intermediate step of a long, complex
check in half-finished change.

tasks.

¢ How can you
experiment with
complex changes and
still get the benefits
of version

management?
SQ-EE%T]CES COMFERENCE & EXPO 2005 SQ-EE%T]CES COMFERENCE & EXPO 2006

 Your version management system
provides the facilities for checkpointing.

¢ You don’t want to publish intermediate
steps.

el . e
£ SN

y B " DEVELOP YOUR| EXPERTISE

Private Versions (Solution)

Wrap Up, Destinations

* Provide developers with a mechanism for
checkpointing changes using a simple interface.
¢ Implement as:
— Private History
— A Private Repository
— A Private Branch

» [Compare with Task Branch for long lived /joint
efforts.]

S T

y | . \ DEVELOP YOUR|EXPERTISE

EallA VL e

CEVELOP YOUR| EXPERTISE

The CM Patterns Book Other'Books of Interest

[[
: < * e Pub Nov 2002 By
SOFTWARE CONFIGURATION Addison-Wesley o Congd e

MANAGEMENT PATTERNS Professional.

* ISBN: 0201741172

Elfective Teamwork, Practical lmtegration

Pragmatic Version Pragmatic Version JUnit Recipies Pragmatic Project

Cgﬂlt)r;)elrl.slisggg Control Using CVS by J. B. Rainsberger Automation
by Andy Hunt & by Mike Clark
by Mike Mason Dave Thomas

24

[CEVELOP

O'ther Pointers

YOUR EXPERTISE

* www.scmpatterns.com
e acme.bradapp.net

e www.berczuk.com

e www.cmcrossroads.com

* steve@berczuk.com

qD.BEEETIGES COMFERENCE & EXPO 2005

oy DCEVELOP YOUR EXPERTISE

Questions?

qD.BEEETIGES COMFERENCE & EXPO 2005

25

