
Editor: Ronald D. Williams, University of Virginia, Thornton Hall/Electrical Engineering, Charlottesville, VA 22903: ohone (8041 924-7960; fax (804) 924-8818;
. I

Internet, rclwQ;irginia.edu

F inding solutions through pattern languages

Steve Berczuk, MIT Center for Space Research

Interest in patterns and pattern lan- and forms that appeared in cities,
guages has been on the upswing, fueled towns, and buildings in the world at
by the realization among software de- large. Alexander’s pattern language is
velopers that they must simplify the “a system which allows its users to
process of building increasingly large create an infinite variety of those. .
and complex systems. Patterns are combinations of patterns which we call
forms for describing architectural con- buildings, gardens, and towns.“’
structs in a manner that emphasizes Alexander defines a pattern as “a rule
these constructs’ potential for reuse. which describes what you have to do to
They provide a way to document and generate the entity which it defines.“’ A
share design expertise in an application- pattern describes a solution to a prob-
independent fashion. As evidence of lem in an environment “in such a way
this growing interest, early in August that you can use this solution a million
more than 70 software practitioners t imes over, without ever doing it the
gathered to discuss patterns and pattern same way twice.“2 Alexander docu-
languages at the first annual conference ments patterns that exist all around us;
on Pattern Languages of Programs. for example, each building is unique,

The idea of using patterns and pat- yet all buildings share many features.
tern languages is borrowed from work One of Alexander’s patterns is called
done in building architecture to de- “Master and Apprentices.” It describes
scribe qualities for good architectural how to arrange workspaces so that new
designs. In the seventies, the architect employees can learn by being in proxim-
Christopher Alexander started using ity to their mentors and use day-to-day
pattern languages to describe the events experiences as a training mechanism.

To learn more

Alexander explains the motivation behind a pattern language and provides an
example of a well-developed one. ‘, * Lea provides historical perspective on pattern
languages, as well as a description of how they relate to architecture. Goad gives
guidel ines for f inding patterns for object-oriented analysis and design. Gabriel dis-
cusses how we can use patterns to begin understanding what quailty is in software.5

Current applications of patterns include Copl ien’s book on C++ idioms and the
forthcoming design patterns by Gamma et aL7 Siemens is cataloging pattenis for
possible reuse in architectures.s

To learn more about patterns, you can subscribe to the patterns mail ing list (send
e-mail to patterns-request@cs.uiuc.edu).

References

1.
2.

3.

4.
5.

6.

7.

8.

C. Alexander, The Timeless Way of Building, Oxford University Press, New York, 1979.
C. Alexander et al., “A Pattern Language: Towns, Buildings, Construction,” Oxford University
Press, New York, 1977.
D. Lea, “Christopher Alexander: An Introduction for Object-Oriented Designers,” ACM Software
Eng. Notes, Vol. 19, No. 1, Jan. 1994, pp. 39-46.
P. Coad, “Object-Oriented Patterns,” Comm. ACM, Vol. 35, No. 9, Sept. 1992, pp. 152-159.
R. P. Gabriel, “The Quality Without a Name,” .I. Object-OrientedProgramming, Vol. 6, No. 5,
Sept. 1993, pp. 86-88.
J. Coplien, Advanced C++ Programming Sty/es and Idioms, Addison Wesley, Reading, Mass.,
1992.
E. Gamma et al., Design Patterns: Elements of Reusable Object-Otiented Software
Architecture, Addison Wesley, Reading, Mass., 1994.
F. Buschmann and Ft. IWeuiner, ‘A System of Patterns,” Proc. Fir&Annual Conf. Pattern Lan-
guages of Programs, Addison Wesley, Reading, Mass., to be published May 1995.

Although the advantages of having
trainees learn from the daily work envi-
ronment may seem obvious, in many
organizations the office setup does not
encourage this. Documenting this pat-
tern, and referring to it when designing
offices, helps a less experienced archi-
tect build a quality workplace.

Software development presents an
analogous situation. Independently
developed software systems often share
common elements of an architectural
structure. An example of a low-level
pattern in C++ is checking for a nonnull
pointer after allocating an object with
new (this could also be called an “id-
iom”3). Most programs do this, and
ones that don’t are likely to run into
problems. An example of a higher level
pattern is the use of callbacks to initiate
an operation when an event happens.
Higher still are patterns of structure in
software development organizations.”
These patterns are discovered by expe-
rience. By documenting these patterns
and their relationships, we can develop
a set of languages to guide developers
in building new systems.

The connection between Alexander’s
patterns and software architecture has
led many in the software community to
argue for a higher-level organizing
principle in software than that of ob-
jects. Much recent discussion logically
centers on object-oriented design,
where it is natural to discuss interac-
tions between entities. Yet patterns
have uses in other paradigms, and peo-
ple are beginning to propose patterns
that apply to shell scripts and other
procedural systems.

An Alexandrian pattern consists of
the following components:*

l A name, which describes briefly
what the pattern accomplishes
within certain larger patterns.

l A concise problem statement.
l The body of the problem, including

the motivation for the pattern and

the forces involved in resolving the
problem.

l A solution, preferably stated in the
form of an instruction.

l A discussion of how the pattern re-
lates to other patterns in the language.

We can create a similar form using
patterns to document software frame-
works5 and architectures. A pattern
language is a set of patterns that guide
an architect through a design. Each
pattern is a description of a solution to a
problem using other patterns that occur
in the system. The details of the form
vary, but the essential elements are
context, problem, and solution.

on Pattern Languages6 contains more

Figure 1 contains a simple example of
a pattern. Notice that the callback mech-
anism described here is similar to the
callback mechanism used by window
managers to connect events to user
events. This illustrates the power of
patterns. They describe the static and
dynamic structures that occur in a variety
of software systems in a manner that
emphasizes common aspects that make
the pattern applicable across domains.
(The Proceedings of the First Conference

involved examples of patterns.)
Alexander’s pattern language con-

tains over 250 patterns, organized from
high level to low level. The goal in docu-
menting patterns that exist in software
architectures is to arrive at a similar
system, but this will take time. When we
begin to document patterns, smaller and
larger ones will be discovered, so the
context cannot always immediately be
specified entirely in terms of existing
patterns. But we can ultimately specify
context by discussing the situation that
surrounds the problem.

Pattern languages are a useful
medium for documenting software
architectures. Unlike other ways of
describing the design, a pattern by defi-
nition describes the motivation
surrounding the decision to use a partic-
ular solution, including the context and
forces influencing the design. Patterns
are often independent of the implemen-
tation language and can be used to de-
scribe connections between components.

used in a number of situations and thus

Why use patterns? The pattern form is
well suited to documenting design tech-
niques. Unlike a design document, a
pattern reflects something that has been

Name: Callback & Handler

Context: A system in which processing operations need to be assigned to events
dynamically.

Problem statement: In a software system it is sometimes necessary to specify an
action to occur in response to an event. The event-to-operation mapping may
need to be specified by the user rather than by being hard-coded.

Problem Description: Consider a system that provides a facility to read in text
documents from a stream and classify the documents according to their format
(plain text, PostScript, X bitmap image, etc.). When the application sees a docu-
ment of a certain type, the document is displayed. The subsystem that parses the
document does not know the details needed to display the various document
formats, and there is a requirement that the application user be able to specify an
external application to view the document.

Solution: Use an event callback/handler mechanism. Provide a facility where the
interpretation subsystem dispatches documents of a specific type to a view appli-
cation for documents of that type. Provide the application with a set of common
default view applications to reduce the need for the user to do extensive setup.

Participants:
Event Generator (Text Interpreter): Parses input text and creates documents of a
specific class.
Event to be handled (Document): A subclass for each type of document format;
provide a facility for setting the appropriate viewer to display.
Handler (Viewer): A representation of the display application used to display the
documents.

Figure 1. An example of a pattern.

76

has some generality. It has a context,
which explains the intent of the pattern
and suggests how it is to be used. Pat-
terns also express solutions in ways that
allow for some variation depending on
the details of a circumstance. Finally,
patterns can express architectural con-
siderations independent of language and
design methodology.

A designer wishing to use patterns can
take a number of approaches. One is to
compile patterns from a domain into a
book and hand it to system architects.
Another is to develop a system to cata-
log these patterns and use a tool to ex-
tract a pattern appropriate to the prob-
lem at hand. While a system of patterns
(a language) is the ultimate goal, there
are many stand-alone patterns that can
and should be documented.

Although patterns are often discov-
ered during design, and using a pattern
language will aid design, writing pat-
terns is not part of a design methodol-
ogy. Patterns are discovered from expe-
rience. Writing the patterns found in an
application helps future developers of
similar applications integrate the key
architectural components.

Patterns exist in our software. When
they are documented, design wisdom
can be leveraged by other projects in
your company.

1. C. Alexander, The Timeless Way of
Buildina. Oxford University Press. New
York, 1519.

_
2. C. Alexander et al., A Pattern Language:

Towns, Buildings, Construction, Oxford
University Press, New York, 1977.

3. J. Coplien, Advanced C++ Programming
Styles and Idioms, Addison Wesley,
Reading, Mass., 1992.

4. J. Coplien, “A Development Process
Generative Pattern Language,” Proc.
First Annual Con$ Pattern Languages of
Programs, Addison Wesley, Reading,
Mass., to be published May 1995.

5. R. Johnson, “Documenting Frameworks
Using Patterns,” Proc. OOPSLA, ACM
Press, New York, 1992.

6. Proc. First Annual Conf Pattern Lan-
guages of Programs, Addison Wesley,
Reading, Mass., to be published May
1995.

Steve Berczuk is a software engineer at the
MIT Center for Space Research. He can be
contacted at the MIT Center for Space
Research, Room NESO-6015,77
Massachusetts Avenue, Cambridge, M A
02193; e-mail berczuk@mit.edu.

COMPUTER

