
C U T T E R

J O U R N A L

iji Context Is Key:
pThe Power of Pattern Languages

by Steve BerczukI

“Do you know patterns?” This ques¬
tion often comes up in the context
of employment interviews, techni¬
cal exchanges, and other situations
in which people want to find out
how much aperson knows about
the state of the art. On the surface

this is areasonable question; pat¬
terns capture important knowledge
about how to build systems. The
question that one rarely hears is,
“Do you know how to use pat¬
terns?” Patterns taken one at atime

can require some skill to apply
effectively.

Blindly applying patterns can be
counterproductive. Acommon
complaint is that new readers of
Design Patterns [5] start applying
patterns everywhere without much
thought about why it might make
sense. Rather than leading to better
code, this approach leads to a
mess. To fully provide benefit, the
patterns need to be part of apattern
language that helps you to under¬
stand the context of each pattern.

In this article. I’ll explain what
context means for patterns, why
it matters, and why you as a
reader/learner don’t really need to
understand patterns as aform to
benefit from awell-written pattern
language. 1will use examples from
apattern language that 1developed
with Brad Appleton, which is
published in the hook Software

Configuration Management Patterns
[3]. This pattern language illustrates
how key software configuration
management (SCM) practices inter¬
act with other aspects of an agile
development environment, such as
testing, to help you understand why
the practices make sense.

Another definition is closer to what

we’re talking about here: “a dis¬
cernible coherent system based on
the intended interrelationship of
component parts.” To completely
explain what apattern is and what
apattern language is, we need to
refer to the writings of the architect
and builder Christopher Alexander,
who Inspired the writers of the ear¬
liest software patterns.

According to Alexander, apattern
“describes aproblem which occurs
over and over again in our environ¬
ment, and then describes the core
of the solution to that problem, in
such away that you can use this
solution amillion times over, with¬
out ever doing it the same way
twice” [2]. Alexander describes
the “essential” quality of patterns:

The pattern solves aproblem. It
is not merely “a” pattern, which
one might or might not use on a
hillside. It is adesirable pattern;
for aperson who wants to farm
ahillside, and prevent it from
erosion, he must create this pat¬
tern in o rder to ma in ta in as tab le

and healthy world. In this sense,
the pattern not only tells him
how to create the pattern of ter¬
racing, if he wants to; it also tells
him that it is essential for him to

do so, in certain particular con¬
texts, and that he must create
this pattern there [1].

One aspect of patterns that is often
overlooked is that apattern does

i
Or WHAT ARE PATTERNS?

A“pattern” about asoftware sys¬
tem describes aknown good solu¬
tion that developers have used with
success in the past. Patterns are not
about new ideas; they are about
making it easier for you to leverage
the experience of experts in a
domain. Patterns are an excellent

mechanism for capturing tacit
knowledge [7]. Patterns can be
about any aspect of software devel¬
opment, ranging from architecture
to organization structure to testing
practices.

Patterns are not just about the for¬
mat in which the knowledge is doc¬
umented, although the particular
format has advantages. Writing
something in pattern form does
not make it apattern.

The dictionary definition of pattern
is only superficially related to apat¬
tern in the way that we are speak¬
ing; Merriam-Webster Online
defines apattern first as “a form
or model proposed for imitation.”

Get The Cutter Edge free: www.cutter.com Vol. 16, No. 9



C U T T E R

J O U R N A L

often not used to its full potential in
the pattern world.

Merr iam-Webster Onl ine defines
context as “the interrelated condi¬
tions in which something exists or
occurs.” This captures the basic
idea of what context is, but it leaves
open the question of how to define
what these conditions are. In apat¬
tern language, you capture these
conditions by referring to the other
patterns in the pattern language.
You say that apattern occurs in the
context of another pattern.

Often, patterns address context by
including an “intent” section that
describes what the pattern is trying
to do. This helps you narrow down
whether the pattern is relevant,
but it removes some precision. By
defining the context in terms of pat¬
terns rather than colloquially, you
leave less room for misinterpreta¬
tion. Since pattern names can
become part of the vocabulary of a
team, referring to aspecific pattern
as “the context” gives you aconcise
and accurate way of describing
what the preconditions for applying
the pattern are.

Consider the following definitions
of the conditions in which the

Visitor pattern could occur:

■Intent: “Represent an opera¬
tion to be performed on the
elements of an object struc¬
ture. Visitor lets you define
anew operation without
changing the classes of
the elements on which it
operates” [5j.

■Context: When using a
Composite or an Interpreter,
you want to represent an

question is whether that connec¬
tion to apattern language is implicit
(the pattern language in your head)
or explicit (a documented pattern
language).

When learning new things, we
often need help in understanding
the big picture. We tend to focus
on details and short-term goals. By
viewing the elements of asolution
in context, we can grow to under¬
stand aproblem and build atruly
good solution.

Pattern languages are not just about
acertain writing style or acertain
form. When reading apattern lan¬
guage, you do not even need to be
aware of the form. An author can

document apattern language and
even ignore apattern form, and the
reader will still benefit. The key
things an author of apattern lan¬
guage must consider are the rela¬
tionship between the patterns in
the language and writing those pat¬
terns in away that expresses the
context relationship. If you have an
understanding of the “theory” of
patterns, you may get more out of a
pattern language, but if you do not,
apattern language will step you
through the problem domain in a
way that helps you understand how
these things fit together.

not exist in avacuum. In The

Timeless Way of Building,
A l e x a n d e r w r i t e s :

We see, in summary, that every
pattern we define must be for¬
mulated in the form of arule
which establishes arelationship
between acontext, asystem of
forces which arise in that con¬

text, and aconfiguration which
allows these forces to resolve
themselves in that context [1].

Any decision is based on
d e c i s i o n s t h a t w e h a v e m a d e

in the past, and each deci¬
s i o n i e a d s t o o t h e r c h o i c e s .

The context is what makes patterns
more useful than other knowledge
collections, such as “best prac¬
tices.” Context makes it explicit that
the decisions we make do not

occur in isolation. Any decision is
based on decisions that we have

made in the past, and each deci¬
sion leads to other choices.

Most published patterns do not take
advantage of context, leaving the
readers to assemble the patterns on
their own. An expert is more often a
person who can put ideas together
rather than someone who simply
k n o w s a n u m b e r o f u n c o n n e c t e d

ideas. Assembling patterns into a
pattern language and making the
context explicit is agreat way to
transfer knowledge of how to
assemble small bits of experience
into auseful whole. One could

argue that “real” patterns only exist
as part of apattern language. The

WHAT IS CONTEXT?

Acommon, simple definition for
pattern is “solution to aproblem in
acontext.” The idea of context is
what makes patterns very useful
and distinguishes patterns from
best practices and other ways of
capturing knowledge. Context is

©2003 Cutter Information LLCSeptember 2003



C U T T E R

J O U R N A L

operation to be performed
on the elements, without
changing the classes of those
e l e m e n t s .

The firs t bu l le ted i tem is the in tent

section of the Visitor pattern in
Design Patterns. The second is a
rewrite of it using the idea of con¬
text, adding information from the
“Re la ted Pa t t e rns ” sec t i on o f t he

same chapter. The intent version is
agood general description that will
make sense when you already have
ageneral understanding of the prob¬
lem. The context description guides
you through building asystem by
combining patterns. The second is
less general than the first, but it is
a l s o m o r e u s e f u l f o r a l e a r n e r.

h a v e u s e d a U M L c o n t a i n s d e fi n i ¬

tion; others have use “completes.”
If you are writing pattern languages,
having aconcrete understanding
of what context means is impor¬
tant. If you are using apattern, the
formal meaning should fade into
the background.

It is important to remember that
context relationships are not about
the temporal order in which you
implement the patterns. They are
about how the pattern stmctures
relate to each other. One advantage
of using context well is that since
the patterns are closely related to
each other by context, the patterns
can, in turn, represent small, under¬
standable units of information.

version control and build practices
interact with testing practices to
help establish the rhythm of the
development process [6]. Its pat¬
t e r n s c o v e r d i v e r s e b u t r e l a t e d

areas, such as:

■Code lines and branching

■Build and build management

■Developers ’ workspaces

■Testing (unit, integration, and
regression)

The reason for covering all of this
ground is that all of these elements
are related. Each pattern supports
the others. You could certainly
decide to implement one alone, but
your development process, and
your product, would be the worse
for it. Since the pattern language
makes the dependency explicit,
you are less likely to pick apattern
at random and find yourself sur¬
prised when it didn’t turn out as
planned.

It is helpful to think about patterns
as structures that the pattern lan¬
guage shows you how to combine
to build abigger, useful structure.
Patterns work to support each
other. Saying that “Composite is
part of the context for Visitor”
means two things:

1. Consider using Visitor if you are
going to use Composite.

2. Visitor supports Composite
(or helps you to realize a
Composite).

Say you are building atable and you
want to talk about the relationship
between the tabletop and the legs.
The legs make sense in the context
of the tabletop, and the tabletop
works best when you have legs.

Many mathematically inclined peo¬
ple have tried to define acontext
relationship more precisely than
“an interrelated condit ion.” Some

SOME PATTERNS FOR AGILE
SOFTWARE DEVELOPMENT

To illustrate how apattern language
approach can be useful, Iwill
describe how some of the patterns
in apattern language for using SCM
in an agile environment fit together.
This section will not describe the

patterns in detail but will illustrate
how apattern language that places
each pattern in context can be
more useful than asimple catalog
of patterns.

The SCM pattern language is abit
different from many pattern collec¬
tions because it addresses acrucial

but often ignored aspect of soft¬
ware development —the way

ASample Pattern
Here is an excerpt from one of
the patterns in the SCM pattern
language:

You have an evolving codeline
that has code intended to work
with afuture product release.
You are doing most of your work
o n a M a i n l i n e .

When you are working in a
dynamic development environ¬
ment, many people are chang¬
ing the code. Team members
are working toward making the
system better, but any change
can break the system, and
changes can conflict. This pat¬
tern helps you balance stability

I

'There are other published patterns that
use apattern language structure; for
example, Martin Fowler’s Patterns of
Enterprise Application Architecture [4].

Vol. 16, No. 9Get The Cutter Edge free: www.cutter.com



C U T T E R

J O U R N A L

pattern depends on anumber of
other patterns that allow for abuild
and test environment, as well as for
alternate codelines to support tasks
w h e r e “ a c t i v e ” i s n ’ t b e s t . H e r e a r e

some of the issues that you need
t o a d d r e s s :

Overview of the Language
Figure 1shows the patterns in the
language that this article discusses.
The patterns toward the top of the
diagram build on the patterns on
the bottom, and each pattern
m a k e s s e n s e i n t h e c o n t e x t o f

the ones above i t .

and progress in an active devel¬
opment effort.

How do you keep arapidly
evolving codeline stable
enough to be useful?

[Problem details omitted here]

Institute policies that are
effective in making your main
development l ine stable
enough for the work it needs
to do. Do not aim for aperfect
active development l ine but
f o r a m a i n l i n e t h a t i s u s a b l e

and active enough for
your needs.

[Solution details omitted here]

■Y o u n e e d t o a l l o w d e v e l ¬

opers to work on their tasks
while the codeline is chang¬
ing. Private Workspace
a d d r e s s e s t h i s .

■Y o u h a v e t o m a k e s u r e t h a t

the developers are not likely
to check in achange that
w i l l b r e a k t h e b u i l d . P r i v a t e

System Build provides away
for developers to do abuild
locally that matches the
centralized integration build.
Smoke Test gives developers
aset of tests to run (quickly)
to ensure that the application
i s n ’ t b r o k e n .

■Once you have released
an application and need to
provide patches, you want
to emphasize caution over
speed. The pattern language
includes aRelease Line pat¬
tern that supports Active
Development Line.

■Given that there wi l l be d i f¬
ferent types of codelines,
you need away to express
how each should be used.

Codeline Policy does this.

Smoke Test illustrates the inter¬

dependence of the patterns very
clearly. There is atendency in orga¬
nizations to err on the side of cau¬

tion and require exhaustive testing.
Tests that run too long can cause
the rate of change to the codeline
to be very low. On the other hand.

Mainline and Active
Development Line
The pattern language starts with the
idea of developing code on asingle
development line, aMainline.
There are other codeline models,
but agile development favors sim¬
plicity, and the simplest develop¬
m e n t s t r u c t u r e i s a M a i n l i n e . O n e

can, however, do Mainline devel¬
opment and have your project pro¬
ceed at aglacial pace. The Active
Development Line pattern says, in
t h e c o n t e x t o f a M a i n l i n e e n v i r o n ¬

ment, let your codeline evolve
rapidly, but keep it useful. This

The sec t ion in i ta l i cs i s the con tex t

sec t i on . The sec t i on i n bo ld i s the

problem summary. In the complete
pattern, adetailed description of
the problem follows the problem
summary. Then comes the solution
summary (in bold italics above),
followed by details of the solution.

M a i n l i n e

Active Development Line

Private Workspace

X
Private System Build

Codeline Policy
S m o k e T e s t

U n i t Te s t Regression Test

Figure 1—Some of the patterns in the SCM pattern language.

September 2003 ©2003 Cutter information LLC



C U T T E R

J O U R N A L

sho r t t es t s w i l l ca t ch f ewe r e r r o r s .

You balance these forces by provid¬
ing for Unit Tests that the develop¬
ers can run to test the local change
more comprehensively, as well as
thorough regression tests that may
run on the integration machine.
Each set of tests reduces the possi¬
bility of an error making it all the
way through the system while
allowing for speed where it
m a t t e r s m o s t .

for patterns authors is to write pat¬
terns and pattern languages that
help the novice get up to speed
quickly. Software development is
complicated enough that hands-on
learning and mentoring will be the
best way to learn for some time, but
with some work on pattern lan¬
guages, we can make it easier to
share the important part of knowl¬
edge: how to put things together.

To build good systems, we need to
b e m o r e a w a r e o f t h e c o n n e c t i o n s

between different parts of adevel¬
opment process. Patterns and pat¬
tern languages are excellent tools
for capturing knowledge that spans
areas of expertise.

4. Fowler, Martin. Patterns of
Enterprise Application Architecture.
Addison-Wesley, 2003.

5. Gamma, Erich, Richard Helm,
Ralph Johnson, and John Vlissides.
Design Patterns: Elements of
Reusable Object-Oriented
Software. Addison-Wesley, 1995.

6. Kane, David, David Dikel, and
J a m e s R . W i l s o n . “ P a t t e r n s

for Managing the Rhythm of
E-Commerce.” Cutter IT Journal,
Vol. 14, No. 1, January 2001,
pp. 20-29.

7. May, Daniel, and Paul Taylor.
“Knowledge Management with
P a t t e r n s . ” C o m m u n i c a t i o n s o f t h e

ACM, Vol. 46, No. 7, July 2003,
pp. 94-99.

THE MISSING LINKS

Why don’t we see more use of
context in published patterns? The
answer varies from person to per¬
son. One reason is tha t the idea

of context is hard to understand,
and the writer of aset of patterns
h a s o f t e n i n t e r n a l i z e d t h e c o n ¬

text relationships and isn’t aware
of what is missing. Another reason
is that some patterns authors get
overly concerned about form (the
how) and don’t step back to realize
that the language is the harder thing
to explain. Also, there are often
intellectual property issues involved
in relating to other patterns.

None of this is to say that there isn’t
value in many of the published pat¬
terns that are out there now. They
are very useful tools for building
good systems once you understand
the basic vocabulary. The next step

REFERENCES

Steve Berczuk is an independent consul¬
tant based in Arlington, Massachusetts.
He has been developing object-oriented
software applications since 1989.
Mr. Berczuk is the coauthor (with
Brad Appleton) of Software
Configuration Management Patterns:
Effective Teamwork, Practical Integration
He has an M.S. in operations research
from Stanford University and an S.B. in
electrical engineering from MIT.

M r B e r c z u k c a n b e r e a c h e d a t E - m a i l :

steve@berczuk.com; Web site:
WWW. berczuk. com.

1. Alexander, Christopher. The
Timeless Way of Building. Oxford
University Press, 1979.

2. Alexander, Christopher, Sara
Ishikawa, and Murray Silverstein,
with Max Jacobson, Ingrid Fiksdahl-
King, and Shlomo Angel. APattern
Language. Oxford University Press,
1977.

3. Berczuk, Stephen R, and Brad
Appleton. Software Configuration
Management Patterns: Effective
Teamwork, Practical Integration.
Addison-Wesley, 2002.

Vol. 16, No. 9Get The Cutter Edge free: www.cutter.com


