
CUTTER CONSORTIUM

Starting Agile Adoption:
Part II — Avoiding Common
Pitfalls of Planning

by Steve Berczuk

Agile software development involves people working
together, across disciplines, to deliver business value
efficiently. While the Agile Manifesto states that agile
development values “responding to change over fol-
lowing a plan” and “working software over documen-
tation,” that does not mean plans are not important. A
plan allows you to measure your progress, focus your
efforts, or, more important, present a target that stake-
holders can invest in. Too much time planning is waste-
ful, and it can be tricky to balance the lean imperative
for reducing waste, with the comfort that a complete
plan up front gives you. Collaboration makes agile
effective and allows you to plan more efficiently and
keep the focus on delivering value. This Executive
Update, the second in a three-part series about starting
agile adoption, discusses how to avoid some of the
common pitfalls of adopting agile planning.

OVERVIEW OF AGILE PLANNING

Because agile methods downplay the role of up-front
documentation, a common misconception is that agile
planning is undisciplined, favoring an approach that
builds something now and fixes it later. In practice,
planning is essential to successful agile software
development.

Agile planning uses lightweight artifacts that enable
teams to capture the essential aspects of requirements
quickly and with minimal cost. Your plan enables you
to identify problems and adjust to address new issues
and market demands. With an agile planning process,
the team can identify high-cost, high-risk items quickly
as well as move forward on high-priority and well-
understood items without excessive overhead.

Successful agile planning requires significant discipline
and frequent, honest feedback. Agile plans are:

Incremental. Each unit of planning demonstrates
some increment of functionality that you expect can
be completed in the sprint.

Measurable. Each increment of work should have a
definition of completeness that all stakeholders agree
on. This helps make progress more measurable by
providing the team and stakeholders a point at which
to make a binary decision about a story’s complete-
ness, without having to judge percent complete,
which is often not actionable.

Iterative. At the end of a sprint, stakeholders review
the current state of the working software and com-
pare progress to the plan. You evaluate project risk at
the end of each iteration, rather than at the end of the
project, and you base your evaluation on the state of
working software. Sprint reviews are essential for
developing an effective agile planning process.

Collaborative. Software development is complex,
and requirements and estimates have context and
assumptions. Involving the right people in planning
discussions early helps to significantly mitigate the
project risks.

Focused on business value. Everything on the back-
log, whether it originated from a customer request,
a product owner’s vision, or an engineering need,
should be prioritized in terms of the value that the
item delivers to the organization.

At the center of agile planning is collaboration. In
Lean Architecture, Jim Coplien describes the lean secret:
“Everyone All Together, From Early On.”1 By providing
a framework to identify risks and issues collaboratively,
agile planning techniques aim to get the feedback you
need to plan effectively.

PLANNING AND THE PLAN

An agile approach mitigates risk by having frequent,
high-quality communication among all stakeholders.
This includes developers, testers, product managers,
and other stakeholders who can provide insight into

Agile Product & Project Management Advisory Service
Executive Update Vol. 11, No. 21

http://www.cutter.com
http://www.cutter.com
http://www.cutter.com


AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE2

Vol. 11, No. 21 ©2010 Cutter Consortium

costs and tradeoffs as well as those who can answer
questions and clarify misunderstandings. The high
degree of participation and collaboration can help your
team be more productive.

No matter how complete a specification appears, for
all but the most trivial features, the context provides
insight into the intention of a requirement. More
detailed written specifications can give you a sense
of security and a feeling that you’ve understood the
problem fully, but often detailed specifications are not
completely read, expensive to keep up to date, and
become quickly outdated as your team adapts to an
obstacle. There will always be uncertainty. By erring on
the side of less up-front documentation in favor of more
interaction, including demonstrations of running code,
you can make the most of the effort spent on planning
and start evaluating working systems sooner.

USER STORIES AND USE CASES

The first step in an agile planning process is a user
story.2 A user story is a lightweight starting point
for understanding priority, cost, and for exploring 
alternative solutions.

A useful template for a user story is “As a <User>
I want to <do something> <so that>.”3 This template
covers the essential elements of a user story:

The user who will benefit from the story

The task the user wants to perform

The benefit providing this functionality will provide

While this template may feel contrived in some cases,
it’s rare that you can claim to really understand a need
without having expressed all of these elements. 

User stories don’t replace more detailed analysis tech-
niques, such as use cases, for any but the most trivial
requirements. A user story provides you with a way to
quickly identify business value risk, as well as which
stories could benefit from more detailed analysis and
for which of these where the cost of the analysis would
not be commensurate with the value.

A user story approach also encourages a focus on deliv-
ering business value and helps teams move away from a
“show me the spec” attitude to a more collaborative one.

TECHNICAL REQUIREMENTS AND USER STORIES

Teams transitioning to agile struggle with how to man-
age technical and infrastructure tasks on their project
backlog while still allowing business value to be the
primary driver of prioritization. Such items as setting
up testing infrastructures and repaying technical debt
are important to a project’s success, but they are often
considered outside of the realm of the product owner’s
realm of prioritization.

A technical task can and should also be expressed in the
same terms as feature-oriented user stories. To be suc-
cessful, agile software development depends on techni-
cal practices. But business priorities should determine
what you do. You can balance this by viewing tasks
that seem like nonfeature work through a product-
value lens:

Include such tasks as refactoring or repaying techni-
cal debt in the estimates for the story in which you
will do the work.

Explain infrastructure tasks that don’t connect
directly to features in terms of product value.

It’s important for the development team to work with
business goals in mind. Agile projects are a collaboration
between technical and businesspeople, and the business
should be able to understand the value that a technical
improvement brings. In the end, success of this process
depends on the product owners and development team
establishing trust and a common set of goals.

PRIORITIES COME FIRST

Given a set of features in the form of user stories,
the next step is to prioritize.

A product owner asks a team to estimate a large num-
ber of backlog items so that he can prioritize them, tak-
ing cost into account. The rationale is often “feature
A is only important if it’s not expensive.” There are
three problems with this approach:

The Executive Update is a publication of the Agile Product & Project Management Advisory Service. ©2010 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image
scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter
Consortium publications, call +1 781 648 8700 or e-mail service@cutter.com. Print ISSN: 1946-7338 (Executive Report, Executive Summary, and
Executive Update); online/electronic ISSN: 1554-706X.

mailto:service@cutter.com


EXECUTIVE UPDATE 3

www.cutter.com Vol. 11, No. 21

1. It requires the team to spend significantly more time
in estimation and planning activities than if the prod-
uct owner had prioritized first.

2. It takes away an opportunity to rethink a feature that
seems important but costly. While it might not make
business sense to implement one feature when it is as
expensive as three others combined, there may be a
light version of the feature that the team and the prod-
uct owner can define that will address the core needs.

3. By making estimated cost an early input into the
prioritization process, the product owner is ceding
control of the backlog to the team.

It still may be true that in the end, a feature is too
expensive to implement, but in many cases, a team
can make tradeoffs or reshuffle the priority. Time
spent estimating is time not spent developing features.
While estimation and planning are essential activities,
they provide the most value when connected to
features that are likely to implemented.

ESTIMATION

Planning Poker, as described in Cohn’s Agile Estimating
and Planning,4 is a useful agile estimation technique. In
Planning Poker, the team members simultaneously and
independently estimate user stories, often using cards
with estimates printed on them. Everyone on the team
independently provides estimates, and the range of
estimates gives you insight into the risk in developing
a feature.

The advantages of Planning Poker over more detailed
or formal estimation approaches are that it is:

Collaborative. You quickly gain insight into the
team’s level of confidence in developing a feature.

Interactive. You avoid groupthink, since all estimates
are placed on the table at once.

Quick. You quickly identify features that require
additional discussion.

Some common pitfalls teams encounter are: 

Too much discussion before an initial estimate. A
planning session can become very long if every story
is discussed in detail. The need to do this discussion
is an indication that the stories are too vague to esti-
mate. Stories that are too vague to estimate are often
hard to test or quantify in terms of business value.

Having only a subset of the team in the room.
Trying to optimize people’s time by having a select

group in estimation sessions is also risky. While it
may seem like you are saving time, software systems
are so complex that it is difficult for any one person
to understand the implications and possibilities
of a feature. Having the entire team in the room
allows you to evaluate risks and alternatives more
accurately.

Here is an effective approach that both speeds up the
process and identifies uncertainty:

Review the story. The product owner should briefly
describe the feature and its value to the user. This
should not be a long presentation. If the story has
inconsistencies or is too vague, this will become
clear during estimation. You want to cover the entire
backlog quickly and focus discussion based on what
you discover during the estimation phase. 

Estimate. All should estimate, even if they are uncer-
tain of the work involved. Over time, the team will
collect data and develop a feel for how much effort a
certain type of feature takes to estimate.

Compare and discuss estimates. If you compare esti-
mates, and the estimates are similar, ask one person
to describe the assumptions in terms of details and
implementation. If the team and the product owner
agree, you have some level of confidence in the esti-
mate. If the estimates vary widely, or there is dis-
agreement about the basis for the common estimate,
you have a high-risk story that needs further analysis.

Remember that agile software development is a collab-
orative activity and that you lose the benefits of collab-
oration by limiting who participates in planning and
estimation. 

If your planning and estimation sessions seem long
and unproductive, consider doing some preliminary
work among the product owner, ScrumMaster, and QA
team to make sure your stories have the right level of
fidelity and are at a reasonable level of granularity
before including the whole team. As we learned in
Part I, this can mean combining or splitting stories or
having the product owner work with the QA team (or
the ScrumMaster) to refine the story.5

EFFECTIVE MEETINGS

Underlying all these techniques is the idea of effective
meetings. Whenever you get a group of people together,
there is potential to feel like you are wasting time. As a
consequence, managers often try to optimize meetings
by having fewer meetings and being selective about

http://www.cutter.com


AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE4

Vol. 11, No. 21 ©2010 Cutter Consortium

whom to invite. This often leads to more meetings later,
after the team has been struggling unnecessarily.

Jean Tabaka discusses some good techniques for agile
team meetings in Collaboration Explained.6 Collaboration
doesn’t happen in a vacuum, so try to provide frame-
works where team members can make the best use of
their time.

CONCLUSION

Agile planning is simple in concept but hard to do, and
it’s easy to mistake its lightweight aspect for lack of dis-
cipline and detail. In agile planning, you try to apply
your energy efficiently by doing more detailed analysis
only for stories that have more complexity.

To be successful at agile planning:

Include team members from every aspect of the proj-
ect in planning and estimation. This will help you to
quickly identify alternatives and avoid making incor-
rect assumptions.

Prioritize stories before spending time estimating
them. The business value should drive what you
want to do. If estimates seem out of line, you can
revisit.

Express everything on the backlog in terms of
business value, including technical tasks.

Expect that it will take a couple of iterations for
the planning process to go smoothly.

Agile planning is iterative, both in terms of the process
and how the process evolves. Apply the idea of itera-
tion and review to the planning process itself to tune
the process to suit your organization. While this Update
describes a single agile planning cycle as a linear
process, on projects you will have multiple planning
cycles that use the results of — and the things you
learned from — prior sprints to adapt, focus, and

improve. In Agile Retrospectives, Esther Derby and
Diana Larsen provide excellent guidance about how
to do effective retrospectives.7

By having the right people in the room and keeping the
process lightweight, you can deliver useful software
more quickly with less planning overhead. Part III will
discuss issues around developer or unit testing on an
agile team.

ENDNOTES
1Coplien, James O. Lean Architecture: for Agile Software Development.
Wiley, 2010.

2For more on user stories, see: Cohn, Mike. User Stories Applied:
For Agile Software Development. Addison-Wesley Professional,
2004.

3Cohn. See 2.
4Cohn, Mike. Agile Estimating and Planning. Prentice Hall, 2010.
5Berczuk, Steve. “Starting Agile Adoption: Part I — Quality
Assurance.” Cutter Consortium Agile Product & Project
Management Executive Update, Vol. 11, No. 16, 2010.

6Tabaka, Jean. Collaboration Explained: Facilitation Skills for
Software Project Leaders. Addison-Wesley Professional, 2006.

7Derby, Esther, and Diana Larsen. Agile Retrospectives:
Making Good Teams Great. Pragmatic Bookshelf, 2006.

ABOUT THE AUTHOR

Steve Berczuk is an engineer and ScrumMaster at Humedica,
where he’s helping to build next-generation clinical informatics
applications based on software as a service (SaaS). The author
of Software Configuration Management Patterns: Effective Team-
work, Practical Integration, he is a recognized expert in software
configuration management and agile software development.
Mr. Berczuk is passionate about helping teams work effectively
to produce quality software. He has a master’s degree in opera-
tions research from Stanford University, a bachelor’s degree in
electrical engineering from MIT, and is a Certified Practicing
ScrumMaster. He can be reached at steve@berczuk.com.


