
Printable Version: Use the print command from the menu above to print this item.

Close This Window

End-of-release Branching Strategies
Part 1: Branches and Code Lines
By Steve Berczuk

With meticulous application of agile testing and release-management principles, it is possible to avoid a long, end-of-release period
by realizing the goal of a shippable product at the end of every iteration. Many teams have not yet attained this level of discipline,
and proper use of code branching can help a team make progress. However, using branching incorrectly can have the undesired
effect of slowing down rather than speeding up the team's progress.

In this article we'll describe what branches are for, and how to understand tradeoffs between branching styles. In part two, we will
discuss three approaches for managing the end game of a release cycle and explain how to finish a release when you're not quite
agile enough to always have ready-to-ship code.

Code Lines and Release Branches
A code line is a stream of development to which developers commit changes to be shared with other members of the team.
Development starts on a single code line. As time passes, the team may decide that a section of the code needs to evolve in
parallel with the main stream of development. When this happens, the team creates a branch.

A branch is simply a parallel stream of development work that starts from another code line. In effect, to branch is to make a copy of
the code at a specific point in time so that the code can evolve independently. Source code management (SCM) tools can simplify
the process of merging changes between two code lines by keeping track of what changed in each code line since the time of the
branch. Figure 1 is an example of a simple branching diagram.

Figure 1: Branching

A branch has two important attributes:

1. The point in time that the branch
was created. This is captured by
the version management tool's
ability to track ancestry and is
used to manage the mechanics
of merging.

2. The reason you branched. This
is often captured with naming
conventions or metadata and is
used to determine how to work
with the code line and the
process to follow before
committing changes to the code
line

While the mechanics of branching are
the same, it is the reason for the branch
—often associated with a policy to apply
when committing code to that branch—
that makes each branch special. Among
the most commonly-used branch types are:

javascript:self.close()

Firmness of
Code Lines
In her book
Practical
Perforce, Laura
Wingerd
describes the Tofu
Model for how
change should
flow between
branches. In this
model, release
branches are
"firmest" and task
branches are
least firm, with
the main line in
the middle.
Change flows
from firm code
lines to softer
ones, so the main
line should
continuously take
changes from the
release branch,
but change should
not flow the other
way around. This
ensures stability
of the code lines.

Release branches—used to maintain code released externally
Task branches—used to allow collaboration among team members for long-lived tasks without accidentally breaking code
for others
Private branches—used to allow an individual developer to use the features and benefits of the code while doing risky or
experimental work

Figure 2 (see below) shows a common, simple code line structure: main line development. The simplest code line structure is a
main line model where a team works primarily on one development line, the main line. The advantage of the main line model is that
it is simple; there is a single point of integration, and it's easy to determine the current state of the project without looking across
code lines. The risk with a single code line is that broken code that's committed to the main line can cause everyone problems when
other developers update with broken code in the workspace. How you address the risk of this kind of breakage gets to the core of
your development philosophy. You can assume that things will break and isolate work so that you can fix problems offline, or you
can work towards a process where you keep your code working.

To balance the problems that could be caused by careless commits with the benefits of a single integration point, agile teams use a
variation of the main line pattern called an active development line, which is structurally like the main line—a single code line—but
with policies that help to ensure that the code line is always at a certain level of quality. Some of these policies include writing and
running automated tests before committing changes and setting up a continuous integration process that validates the code
compiles and runs all tests successfully.

Figure 2:
Common code
line structures

There are
alternatives to the
agile, active
development line
approach, but in
the end they defer
problems. Your
team can make
more progress by
helping to keep
the development
stream working
both by exercising
a reasonable
amount of care before commits and also working together to immediately fix problems that might have slipped
by.

Release Branches
Regardless of your development approach, it is often necessary to provide an urgent fix to code that is being
used by customers without introducing additional features or functionality.

In spite of your desire to maintain shipping code, it will take time to get your team and your process to a point
where you can reliably ship from the main line, so branching at or near the end of a release may be useful. This
requires a parallel development stream. This development stream can evolve into a release branch that will allow
you to easily fix critical issues that can't wait until the next release, so teams have processes in place to
integrate these changes back into the main line by merging.

In part two of this article, I'll discuss some approaches to using your branching as a way to help you to deliver a
solidly-tested product, while at the same time allowing you to begin new work while the release is being
finalized.

What's In a Merge?
Version management tools can be very helpful in tracking which changes have not been merged between code lines. In some cases
this is useful, especially close to the time a branch is created. There are many other situations when a literal merge isn't
appropriate. Examples include:

http://www.oreilly.com/catalog/practicalperforce/chapter/ch07.pdf

A change does not apply to new code because of business rules. You might make a change in a release branch to solve a
problem in the current release, but it won't apply once the next release ships.
A change does not apply to new code because structure has changed. For example, the main line may have changed
component structure, thus making the code changes moot. The main line may still need to integrate the functionality but in a
different place. In this case, tests may migrate from branch to main line.

Merging isn't just a mechanical process. This is one reason why changes are best merged either by or in collaboration with the
person who made the original change.

About the Author
Steve Berczuk is an engineer and ScrumMaster at Humedica where he's helping to build next-generation SaaS-based clinical
informatics applications. The author of Software Configuration Management Patterns: Effective Teamwork, Practical Integration, he
is a recognized expert in software configuration management and agile software development. Steve is passionate about helping
teams work effectively to produce quality software. He has an M.S. in operations research from Stanford University and an S.B. in
Electrical Engineering from MIT, and is a certified, practicing ScrumMaster. Contact Steve at steve@berczuk.com or visit
berczuk.com and follow his blog at is steveberczuk.blogspot.com.

StickyMinds.com Weekly Column From 11/8/2010

Close This Window

Home | Resources | Topics | Community | PowerPass

© 2010 StickyMinds.com. All rights reserved.
StickyMinds.com is a division of Software Quality Engineering.

Privacy Policy Terms & Conditions Link to StickyMinds.com Feedback

mailto:steve@berczuk.com
http://www.berczuk.com/
http://steveberczuk.blogspot.com/
javascript:self.close()
http://www.stickyminds.com/index.asp
http://www.stickyminds.com/resources.asp
http://www.stickyminds.com/topics.asp
http://www.stickyminds.com/community.asp
http://www.stickyminds.com/powerpassaccess.asp
http://www.sqe.com/
http://www.stickyminds.com/privacy.asp
http://www.stickyminds.com/termsandconditions.asp
http://www.stickyminds.com/linktosticky.asp
http://www.stickyminds.com/pop_user_submit.asp?ObjectType=FEEDBACK&Function=showform

