
Generalists, Specialists, and
Generalizing Specialists
by Steve Berczuk

Software development is complicated, requiring highly
specialized skills. Agile methods such as Scrum advo-
cate self-organizing, cross-functional teams and promise
predictable, efficient delivery of useful functionality. To
have teams composed of people who are specialists in
each of the relevant skills for your project, you need to
know what the skills are before you plan the iteration.
Unless the work for an iteration matches the available
people, you will have idle hands and incomplete work.
You are also unlikely to have an expert in every area
you need. Having teams of generalists address some of
the problems, but it’s a reasonable concern that general-
ists aren’t going to deliver the best solution for a task.

An organization adopting agile software development
needs to create teams that can be responsive to chang-
ing requirements and also commit to delivering high-
quality functionality at the end of each development
iteration. This Executive Update discusses the concept
of generalizing specialists and how to form teams that
have the right balance of specialized skills to deliver
good software and the flexibility to allow for efficient
delivery.

SPECIALIZATION AND TEAMWORK

At first glance, you might think that the best way
to deliver good software quickly is to have teams of
people who have deep skills in required areas. There
are a number of reasons why this is not the most effec-
tive approach to developing software when you have
changing requirements and need to be agile. Some of
these reasons are as follows:

When a project starts, you don’t know the balance of
work across skills, so it is almost impossible to staff a
team with the “right” skills.

Even if you have the correct skills on the team at
the start, work allocation might not match staffing
allocation.

As discussed in a recent Harvard Business Review blog
post, it’s not just the individuals on a team, but their
interactions that lead to productivity and creativity.1

You want the team to be small enough that the entire
team can participate in planning and design sessions
when appropriate. And ideally, you want your agile
team to be composed of people fully committed to
the project at hand.

Thus, you want a team that can comprise a broad
set of competencies in a relatively small number of
people. Specialists don’t provide this for the reasons
just discussed. Generalists, who can do all things —
and not excel at any — don’t address the need for
deep knowledge on the team. According to Cutter
Senior Consultant Scott Ambler, generalizing specialists
combine most of the flexibility of generalists, with the
ability to apply deep technical skills to a problem in a
specific domain.2 This allows you to deliver functional-
ity efficiently and develop creative solutions while also
keeping team members learning.

A generalizing specialist model is counter to the way
people are used to managing and working. This Update
provides some advice about how to balance generalists,
specialists, and generalizing specialists.

SPECIALIZATION AND THE DEVELOPER

It takes several different skills to deliver working
software. A typical team developing e-commerce appli-
cations might have user interface (UI) developers, mid-
dleware developers, a release engineer, and database
developers. Among each of these groups, there may
be subspecialities (within middleware developers, for
example, there might be an expert in object-relational

Agile Product & Project Management Advisory Service
Executive Update Vol. 12, No. 16

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE2

Vol. 12, No. 16 ©2011 Cutter Consortium

mapping, a framework expert, and a messaging expert).
These divisions illustrate that there are various dimen-
sions in which people on a team have special skills. Some
of the ways that developers specialize include:

Layer. The technologies for UI development are
different than those for server development or
database administration.

Phase. Coding, build, and testing are often consid-
ered distinct skills, even though they often occur
in close proximity, especially on agile teams.

Domain. Independent of technology, some people on
a team might have experience or knowledge about
financial services, or someone might have a particu-
lar aptitude for algorithm work or integration work.

Technology. One person on the team might have
knowledge of a framework you use or a third-party
technology that you use. Someone might be espe-
cially proficient in a programming language (e.g.,
a language lawyer in the Chief Programmer Team
model3).

While many good software developers have skills
that span these dimensions, people have aptitudes,
interests, and experiences that can affect how long it
takes to solve a problem. If you were to assign work
to developers, it might seem reasonable to assign
and select work based on the skill set of the person.
However, by assigning work rather than having teams
select work at the start of an iteration, you can limit the
productivity of the team and lose some of the benefits
of agility that come from agile, self-organizing teams.

AGILE AND SELF-ORGANIZING TEAMS

Agile projects are self-organizing. According to
codeveloper of Scrum, Ken Schwaber, this means that
team members decide how the work gets done and
commit to meeting deliverables.4 This combination
means that teams can be flexible in addressing require-
ments and be more productive. Self-organizing is not
just agile dogma; it enables the benefits of agility. When
teams self-organize, they can take the time to find a
good solution quickly and leverage everyone’s skills.

An important aspect of this process is that the team
decides how best to deliver the functionality. Quite
often, a feature that seems as if it might be best done
one way (e.g., as a stored procedure in the database)
might actually be better implemented in another way
(e.g., in the application tier). You might not know the
skills required to implement a feature until the team
does some design work. The collaboration between
the various generalizing specialists on a team makes
this clear.

There may also be occasions when much of the work
in an iteration seems to involve the expertise of one
person on the team who may not be available. In these
situations, you need to decide whether to defer the task
or allow the team to have someone who is less familiar
(but competent) with the technology work on the tasks.
This flexibility allows the team to focus on business
needs first, rather than let technical capacity be the
sole determinant of priority.

In some cases, work naturally involves more than
one discipline, so dividing work will add overhead.
For example, consider a simple tool with a UI that
answers a question based on information in a database
table. You could have a UI developer do the front end,
a database developer define the schema, a build engi-
neer write the build script, and add the project to the
integration server. But if one developer did all the work
across the lifecycle, you could see results more quickly
and then iterate.

While having a team composed of multi-talented peo-
ple who are equally adept at all areas of technology and
domain understanding sounds like it could be benefi-
cial, it’s also an unreasonable goal. There is so much to
know about any one domain that it isn’t reasonable for
someone to have the time to digest all the information
there is about current practices in more than a couple
of domains.

The most flexible agile teams are composed of general-
izing specialists. There may be someone on the team
who is an excellent UI developer but is able to work on
data architecture, for example. If your team can adopt a
generalizing specialist mindset, you can get more done
more quickly and improve morale.

The Executive Update is a publication of the Agile Product & Project Management Advisory Service. ©2011 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image
scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter
Consortium publications, call +1 781 648 8700 or email service@cutter.com. Print ISSN: 1946-7338 (Executive Report, Executive Summary, and
Executive Update); online/electronic ISSN: 1554-706X.

EXECUTIVE UPDATE 3

www.cutter.com Vol. 12, No. 16

Advantages of Generalizing Specialists

Ambler defines a generalizing specialist as someone
who:5

Has one or more technical specialties (e.g., Java
programming, project management, database
administration)

Has at least a general knowledge of software
development

Has at least a general knowledge of the business
domain in which her or she works

Actively seeks to gain new skills in both existing
specialties as well as in other areas, including both
technical and domain areas

Having generalizing specialists onboard can help
your team be more efficient and come up with better
solutions. Some of the advantages of having teams of
generalizing specialists are:

Better flow — both in the lean sense of maintaining
the flow of work through the system and the optimal
experience sense6 of creating an environment where
people can focus

A more reliable path to the “best” solution —
as team members have some understanding of the
various approaches and are less likely to focus solely
on what they know best

Professional development — as developers want
to learn, and with every new challenge there is an
opportunity to extend their expertise

Fostering a culture of generalizing specialists can make
for a better team and more productive team members.

Core Skills and Specializations

There are some skills all members of an agile team
should have to avoid bottlenecks. They include:

Understanding the basics. Build and configuration
management team members should understand
the basics of their build and software configuration
management systems so that they can execute,
debug, and make simple modifications to the build
process. The build serves the developer.

Testing. A good understanding of testability
makes for more reliable and modular code, and
testing closer to when the time code is constructed
is more efficient.

Experience in scripting languages. Almost
every project needs tools to automate processes
and testing. Being able to write scripts to automate
routine processes helps teams make configurable,
deployable code.

UI development. While user experience can be a
complex subject, many tools have a UI component by
means of which a user interacts with the application.
Familiarity with the UI framework of choice can help
those with expertise in the middle tier develop robust
APIs and can allow someone to own the first draft of
an end-to-end implementation.

Database skills. This applies if you have a data-
driven application.

Being a “master of all” isn’t practical and having
people on your team who can do everything isn’t
realistic. Here are some areas where you want to
have specialization:

The primary development language(s) of the project

Deeper database skills

User experience

Onward to Effective Cross-Functional Teams

In author Atul Gawande’s book about improvement
in medical professions, he relates a story of a clinic
in rural India that is poorly staffed and poorly funded,
and where doctors manage to successfully perform
procedures that are outside the realm of their training.7

Of necessity, this group of people performed work out-
side the range of their expertise and saved lives. They

THE CHALLENGE OF HYPERSPECIALIZATION

In a recent Harvard Business Review article, Malone et al.
discuss the benefits of a hyperspecialization approach, using
an example from software development where UI design
work is farmed out to a UI design expert.1 Most of the
examples in the article involve well-defined tasks. Agile
methods give you an advantage when there is vagueness
in the requirements or the solution. If you have a situation
that works, such as the one in the HBR case, then specialists
might be answer.

1Malone, Thomas W., Robert J. Laubacher, and Tammy Johns. “The
Big Idea: The Age of Hyperspecialization.” Harvard Business Review,
July 2011.

AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE4

Vol. 12, No. 16 ©2011 Cutter Consortium

were able to do this because they frequently met to dis-
cuss their cases with a desire to learn from each other.
While software development is different than medical
care, the value of being able to fill gaps in a team is the
same.8 There are lessons software teams can take away
from these stories about how to use team resources and
leverage people’s skills, including:

For generalizing specialists to be effective, the team
needs to have an ethic of continual learning, both
from outside resources and each other.

When deciding who should work on a task, con-
sider the overall flow of the project. If the special-
ist is available, then you may as well have the
“expert” work on the task (after the team agrees on
an approach). But if waiting for the specialist would
delay the project and there are other people on the
team who don’t have a full backlog of work, consider
having someone else work on it. The specialist can
provide advice and perhaps improve on the work
later. But you will have functional software sooner.

Deciding who the “right” person for a job is involves
balancing project schedule, skills, and interests. While
the temptation to categorize work into a layer or
domain and assign it to the domain expert is great,
you might find that projects are done more quickly
when the team collaborates to find a solution. Some
steps you can take to build and leverage a team of
generalizing specialists are:

Don’t presume how a feature will be implemented.
Try to keep feature definitions in terms of user (or
client) interactions, rather than assuming a database
or UI implementation.

Have the team collaborate to decide how to address
development tasks. There are several possible solu-
tions to a problem, and what seems right at the start
might not be the best after further exploring the
problem.

Ensure that the team has a good understanding of
schedule and feature priorities. This will help the
team to decide whether the task should wait for the
expert or whether someone else should give it a start.

Encourage team members to sign up for tasks rather
than have them assigned. This is especially impor-
tant when a person is working in a new area so that
they he or she feels more committed.

SPECIALIZATION AND GENERALISTS

Software development is a complex, rich discipline
and it is difficult, if not impossible, for a developer
to learn about all the tools, technologies, and frame-
works that exist and still have time to write code. So
a certain degree of specialization is inevitable. But
when you form a team, you want people who have
deep expertise on one or more of the things you are
working on and who are familiar with some of the
other aspects of the application. A team with this mix
of skills and a desire to communicate and share knowl-
edge can deliver useful software more quickly.

ENDNOTES
1Taylor, Bill. “Great People Are Overrated.” HBR Blog Network,
20 June 2011 (http://blogs.hbr.org/taylor/2011/06/great_
people_are_overrated.html).

2Ambler, Scott W. “Generalizing Specialists: Improving Your IT
Career Skills.” Ambysoft (www.agilemodeling.com/essays/
generalizingSpecialists.htm).

3Brooks, Frederick P. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley Professional, 1995.

4Schwaber, Ken. Agile Project Management with Scrum.
Microsoft Press, 2004.

5Ambler. See 2.
6Csikszentmihalyi, Mihaly. Flow: The Psychology of Optimal
Experience. Harper Perennial, 1991

7Gawande, Atul. Better: A Surgeon’s Notes on Performance.
Metropolitan Books, 2007.

8Berczuk, Steve. “Specialization, Generalization, and
Effectiveness in Software Teams: Clinical Metaphors.”
Accidental Simplicity, 4 July 2011 (http://steveberczuk.
blogspot.com/2011/07/specialization-generalization-
and.html).

ABOUT THE AUTHOR

Steve Berczuk is an engineer and ScrumMaster at Humedica,
where he’s helping to build next-generation clinical informatics
applications based on SaaS. The author of Software Configuration
Management Patterns: Effective Teamwork, Practical Integration, he
is a recognized expert in software configuration management
and agile software development. Mr. Berczuk is passionate
about helping teams work effectively to produce quality soft-
ware. He has a master’s degree in operations research from
Stanford University, a bachelor’s degree in electrical engineer-
ing from MIT, and is a Certified Practicing ScrumMaster. He
can be reached at steve@berczuk.com.

