
A Critical Line
of Defense

A R M I N G Y O U R
S O F T W A R E
D E V E L O P M E N T
P R O C E S S

February 2006 $9.95 www.StickyMinds.com

THE BEST
LAID PLANS...

Let principles
be your guide

PAGE 6

AGILE SCM?
Oh yeah,

it's possible
PAGE 30

The Print Companion to

PAGE 24

30 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

B R E A K I N G W I T H

www.StickyMinds.com FEBRUARY 2006 BETTER SOFTWARE 31

A n A g i l e S p i n o n S o f t w a r e
C o n f i g u r a t i o n M a n a g e m e n t

We do not usually associate the words “simple,” “dynamic,” or “agile” with software configuration
management (SCM), but in many cases a simple, dynamic, and agile SCM process can greatly
improve the productivity of a team. SCM gives you the ability to identify and control changes to
your source code and reliably build a version of an application from a point in time. Agile SCM
further enables you to integrate frequent changes, adapt to these changes, and get feedback on how
they affect the quality of the system that you are building. To support feedback, agile SCM processes
emphasize frequent integration and testing at all levels, in addition to the traditional SCM areas of
build, release, and version management.

Tradition

COMMON

Mistakes
Software configuration management

is definitely beneficial, so why are people
often frustrated by it? The answer is that
teams tend to misapply SCM in one of two
ways: too much process or too little process.
Ironically, one is often the consequence of
the other.

With too little process, there’s no
mechanism in place to correct mistakes.
The codeline quickly degrades, so rules
and procedures are added to reduce
risk. When too many are added, the
workflow is disrupted instead of
supported. Despite a sense of security,
errors still make it past development
and are discovered much later. Since the
context for the error has been lost, it is
more difficult and more expensive to
fix. See the StickyNotes for a link to the
article “The Illusion of Control” that
explains how the attempt to gain
control by adding rules often backfires.

Too little process is often a reaction to
witnessing the perils of too much process.
Teams avoid anything that looks like
SCM and lose the coordination advantages

(“Don’t you lose stability by committing
changes so frequently?”). Agile SCM
allows more errors to occur but reduces
risk by catching and correcting them
more quickly, before they can do harm.

ACTIVE

DEVELOPMENT

Line
Some teams allow developers to work

on branches in an attempt to preserve the
integrity of the main codeline. The branches
cause deferred integration, which makes
development more difficult since many
problems surface during integration, long
after they could have been detected. In
contrast, an active development line is
a single codeline to which every team
member commits changes.

For a single active development line,
you need:

� A culture that encourages fine-
grained, frequent check-ins

� Optimistic locking
� The supporting practices of

private workspaces, continuous
integration, and frequent testing

that SCM provides. It appears that they
are making progress, but they have no way
to verify that the changes made in one
place don’t interfere with work elsewhere.

To establish an appropriately agile
SCM process, you need to overcome
your fears and adopt practices that fit
your development process.

AGILE SCM

Practices
To maintain a quality codeline and to

be more productive, agile teams rely on
communication, frequent integration,
and the resulting feedback—using just
the right amount of process. Some agile
practices that you can use even in a non-
agile environment are:

� Working on a single active
development line

� Working in private workspaces
� Using continuous integration
� Performing frequent testing
� Deploying Frequently

Some of these practices cause
worry among those who are used to
more traditional approaches to SCM

by Steve Berczuk

IL
LU

ST
RA

TI
O

N
/T

H
O

M
 B

U
TT

N
ER

PRIVATE Workspaces
Team members do need some degree

of isolation to allow uninterrupted work.
Developers should have a workspace
where they can control when to accept
changes. To create a private workspace:

� Provide resources (disk space,
database space, server software)
that allow a developer to run a
complete system. Some teams use
shared components either in an
attempt to save space or to
prevent people from delaying
integration. Space is cheap compared
to developer time, and forced
integration disrupts developer flow,
hurting productivity.

� Set up a mechanism to allow a
team member to quickly create a
workspace from a repository. The
process should be as automated as
possible, so that all developers’
environments are consistent.

� Provide a private build process
that mirrors the integration build
so a developer can evaluate his
changes before committing them.
Define the build process early in
the development lifecycle.

� Have a policy in which developers
resynchronize their code and build
and test before committing changes.
These precheck-in tests should run
quickly and be automated to ensure
they are run consistently.

CONTINUOUS Integration
A continuous integration system runs

a build moments after anyone’s check-in,
executes more exhaustive tests, and
notifies the team if something is broken.
This allows team members to detect
integration issues that might have slipped
in despite their earlier best efforts. There
is a variety of continuous integration
tools available, and most are fairly
straightforward to set up. In the absence
of an automated tool, you can start an
integration build manually every few
minutes. The cost of setting up this
process is small relative to the lost
productivity caused either by a lingering
mistake or by ill-conceived attempts to
prevent mistakes.

FREQUENT Testing
An active development line can

degrade quickly if continuous integration
checks only that the codeline compiles.
To identify problems the precheck-in
tests would miss, continuous integration
must also run a test suite more thorough
than the precheck-in suite. In addition to
being more thorough, these tests must
run quickly enough so that a developer
gets feedback while he still remembers
what he was doing.

One concern is that tests are difficult
to write, particularly if you are working
with an application that does not have a
modular architecture. Don’t let your
concerns about not being able to do
complete testing cause you to delay
performing any testing. A simple test can
tell you a lot about the health of your
system. See the StickyNotes for some
testing resources.

FREQUENT

Deployment
Working software is only useful if it

is installed or deployed. Frequent
deployment of a working system gives
you an opportunity to work out the bugs
in the deployment process, provides a
mechanism for feedback on the status of
the application, allows you to detect
architectural issues that make it difficult
to deploy easily, and reduces the risk that
an installation or deployment issue will
delay release. Frequent deployment
validates that we have working software
rather than an assemblage of modules
that “do stuff.” The more frequently you
deploy, the better you will become—and
the sooner you will catch errors.

The key steps are:
� Create a deployment process early

in your development cycle.

� Deploy the application frequently
to developer and production-like
environments.

Setting up a simple installation/
deployment process at the beginning is
quick, and it is easier to modify the
process as you go than to create a
complex process from scratch.

CONCLUSION
SCM is often viewed as the least agile

of all software development disciplines,
but that is because SCM is often applied
incorrectly. By applying the principles of
agile SCM, all teams can work more
effectively, even if they do not embrace
an agile process. In fact, an appropriate
SCM practice is a prerequisite for
effective agile software development.
As with all aspects of agile software
development, the tools and processes
should be chosen with the goal in mind
to develop in a predictable manner a
quality software application that
provides business value. See the
StickyNotes for more on establishing
agile SCM and other practices. {end}

Steve Berczuk is a software developer,
consultant, and author who focuses on
applying agile methods to developing
software systems at startup companies.
Steve is the author (with Brad Appleton)
of the book Software Configuration
Management Patterns: Effective Team-
work, Practical Integration published by
Addison-Wesley. He is a senior software
engineer at Fast Search & Transfer
and is a regular contributor to
StickyMinds.com. Steve’s Web site is
www.berczuk.com, and you can email
him at steve@berczuk.com.

32 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

■ “The Illusion of Control”
■ Testing resources
■ Establishing agile SCM

