
www.StickyMinds.com MAY 2007 BETTER SOFTWARE 39

The Last Word

Feedback without Fear
by Stephen P. Berczuk

Agile software development favors for-
ward progress in small steps with the
opportunity to make corrections along the
way. While we may not know everything
at the beginning, we know enough to
move forward a bit at a time. In a success-
ful agile project everyone acknowledges
that there is uncertainty and that the un-
certainty increases as we look further
ahead. To make the appropriate correc-
tions, we need to have useful feedback in
place.

Unfortunately, the words “I want to
give you some feedback” tend to elicit
groans rather than enthusiasm. A phrase
that elicits almost as many groans is
“software configuration management.”
Many teams don’t understand that their
build environments and software config-
uration management (SCM) systems can
be extremely useful tools to provide the
feedback that an agile process needs.

Simple Tools for Feedback
Every software development project

should have two basic tools in place for
feedback: a build environment and a ver-
sion management system. A build
environment (with the appropriate auto-
mated tests) tells you if the code base is
still good, and a version management
system can tell you that things are chang-
ing and how. It’s hard to argue with what
working (or broken) software in the
form of a continuous integration build is
telling you: If you have tests that define
your requirements, you know if you are
meeting your criteria for success. A pass-
ing or failing test tells you a lot more
than a vague statement about progress.

Feedback from the Build
With continuous integration tools

(CruiseControl and Continuum are two
freely available examples) it is straight-
forward to set up a process that tells you
something about the quality of the code.
In a matter of minutes one can install
CruiseControl, for example, and have a

process that will:
• Monitor the version man-

agement system for
changes

• Build a component when
it detects a change

• Run any automated tests
you have in place; and if
you use a build tool like
Maven, you can configure
it to fail the build if cer-
tain metrics such as
coding style are violated
or if unit test coverage
metrics are not met

• Send email to team members with
the success or failure of the build,
including information on what the
last changes were and who made
them

So why doesn’t everyone use the build
to provide feedback on the state of their
applications?

One issue is the lack of automated
tests. Writing tests takes time and not all
architectures are suited for simple devel-
oper testing or automated integration
testing. Rather than giving up, you
should use this as an opportunity to find
out as much as you can. Does everything
build and integrate? Even a test that sim-
ply starts up an application without
errors provides useful information. I have
worked on projects that actually had unit
tests, but what kept giving us problems
were errors in some configuration files
that were read at startup. Until we knew
to write tests for that, we spent more
time than I’d like to admit tracking down
those errors. (The version management
system helped us with that task!) Once
you have these basics in place, you can
explore how to make testing more effec-
tive.

A common excuse is that the tests that
exist aren’t really good tests of end-to-
end functionality, so why bother? While
automated integration tests are good to

have, no test is too trivial. As much as ag-
ile is about combining small steps to
build a useful system, any application is
the sum of its parts. I’ve been in situations
where a team spent hours tracking down
a problem that was caused by an incor-
rect Java hashCode() method. People on
the team thought that writing a test of
hashCode()was too trivial. You need to
start somewhere, and any information is
better than no information.

Feedback from Your Version
Management System

Builds tell you how things are now.
Your SCM system can help you identify
how you got there and give you the abili-
ty to recover from errors.

Most continuous integration systems
provide you with information from the
SCM system about what changed be-
tween the last build and the current
build. When everything works, this is of-
ten just interesting information. When
something breaks, it gives you a tool to
track down what might have caused the
problem. It’s important to realize that if a
change appears in a broken build, the
change itself might not be the problem.
That change might have exposed a mis-
take lurking from earlier in the day. But
the SCM system can give you a place to
start to evaluate why something broke
and where to look to fix it.

40 BETTER SOFTWARE MAY 2007 www.StickyMinds.com

Display Advertising
Shae Young syoung@sqe.com

All Other Inquiries
info@bettersoftware.com

Better Software (USPS: 019-578, ISSN: 1532-3579) is
published twelve times per year. Subscription rate
is US $75 per year. A US $35 shipping charge is
incurred for all non-US addresses. Payments to
Software Quality Engineering must be made
in US funds drawn from a US bank. For more
information, contact info@ bettersoftware. com
or call (800) 450-7854. Back issues may be
purchased for $15 per issue (plus shipping).
Volume discounts available.

Entire contents © 2007 by Software Quality
Engineering (330 Corporate Way, Suite 300, Orange
Park, FL 32073), unless otherwise noted on specific
articles. The opinions expressed within the articles
and contents herein do not necessarily express
those of the publisher (Software Quality Engineering).
All rights reserved. No material in this publication
may be reproduced in any form without permission.
Reprints of individual articles available. Call for details.

Periodicals Postage paid in Orange Park, FL,
and other mailing offices. POSTMASTER: Send
address changes to Better Software,
330 Corporate Way, Suite 300, Orange Park, FL 32073,
 info@ bettersoftware. com.

Index to Advertisers
ACULIS Software Development Services www.aculis.com 13, 15

Agile 2007 Conference www.agile2007.org 37

Better Software Conference & EXPO www.sqe.com/BetterSoftwareConf 5

CollabNet, Inc. www.collab.net Opposite 9

Empirix www.empirix.com 1

EuroSTAR LIVE www.qualtechconferences.com 38

HP Software www.mercury.com/us Back Cover

IBM www.IBM.com/TAKEBACKCONTROL/FLEXIBLE Inside Back Cover

Microsoft www.microsoft.com 6-7

Parasoft Corporation www.parasoft.com Inside Front Cover

Rally Software www.rallydev.com/bsm 36

Seapine Software www.seapine.com 2

SPI Dynamics www.spidynamics.com 29

SQE Training www.sqe.com/training.asp 10

StickyMinds.com PowerPass www.StickyMinds.com/PowerPass 17

TechExcel, Inc. www.techexcel.com 23

The Last Word

Another valuable service an SCM sys-
tem gives you is reproducibility. If
someone on your team is encountering a
problem, or he can’t reproduce a prob-
lem in his workspace, the SCM system
can help identify whether the workspace
contains the correct components, thus
providing an explanation when someone
exclaims that it “works for me!”

When working with their version
management systems, teams often devel-
op overly complex codeline strategies.
While branching is a useful tool, it is
meant to provide for isolated variations.
There are times when the isolation
makes sense, but in many cases teams
use isolation to hide problems and avoid
potentially scary feedback. To get the
best feedback from your SCM system,
use the simplest model that works, and
be sure that the team understands the
codeline and branching strategy.

Avoid the Blame Game
When using your build and SCM sys-

tems as feedback mechanisms, it is

important to remember that the end goal
is improving quality—not casting blame
or resting on laurels. You need to use the
results of the failed builds to work to-
gether as a team to fix the problem;
perhaps the last person who makes a
change is the right person to fix the prob-
lem, but not always. And a series of
passing tests should cause you to wonder
if there is more that you can check for in
your build and more that you can auto-
mate, or if there is a way to have the
build and tests run more quickly.

Once you realize that the goal of the

build feedback process is to know as
much as you can—as soon as you can—
about the state of your codebase, these
and other reasons not to use your build
for feedback become insignificant.

Conclusions
When you are trying to solve a prob-

lem, it’s best to step back and focus on
why you are doing what you are doing
and understand what the problem really
is. The answer is often simpler than you
think. Feedback in a form that makes it
easy to self-correct is essential to an agile
process. There are simple steps you can
take now to give your team the feedback
it needs to be more successful. {end}

Stephen P. Berczuk, a Certified Scrum
Master and co-author of the book Soft-
ware Configuration Management
Patterns: Effective Teamwork, Practical
Integration, is a senior software engi-
neer at FAST. Steve can be contacted at
steve@berczuk.com. His Web site is
www.berczuk.com.

