Patterns for Agile Software Configuration Management

Patterns for Agile

Software Configuration
Management

Steve Berczuk

4 N

Agenda

Background
SCM and Agility.

Patterns and SCM Pattern Languages.
Software Configuration Management

Concepts.

SCM Patterns

Questions

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 2

4 N

Part I: Background/Foundation

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 3

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

What is Agile SCM?

Individuals and Interactions over
Processes and Tools

SCM Tools should support the way that you
work, not the other way around.

Working Software over Comprehensive
Documentation
SCM can automate development policies &

processes: Executable Knowledge over
Documented Knowledge.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 4

4 N

...What is Agile SCM?

Customer Collaboration over Contract
Negotiation.

SCM should facilitate communication among
stakeholders and help manage expectations.

Responding to Change over Following a
Plan.

SCM is about facilitating change, not
preventing it.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 5

4 N

Traditional View of SCM

Configuration
Identification

Configuration Control
Status Accounting

Audit & Review
Build Management

Process
Management, etc

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 6

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Agile SCM

Who
What

When
Where

Why
How

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 7

4 N

SCM as a Tool For Agility

SCM Enables:
Increased productivity

Enhanced responsiveness to customers
Increased quality

SCM Enables Agile Values
XP: Courage. You can reproduce things

easily

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 8

-

What are Patterns and

Pattern Languages?

A pattern is a solution to a problem in a
context.

Patterns capture common knowledge.
Pattern languages guide you in the

process of building something using
patterns. Each pattern is applied in the

correct way at the correct time.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 9

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

SCM Concepts

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 10

4 N

Part of the Puzzle

Architecture
Software

Configuration
Management

Culture/Organization

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 1

4 N

What SCM Does for You

Reproducibility
Integrity

Consistency
Coordination

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 12

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

SCM Done Badly Can:

Slow down development
Frustrate developers

Limit customer options

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 13

4 N

Alternate Definition of SCM

SCM is a set of structures and actions
that enable you to build systems in

repeatable, agile fashion while improving
quality and helping your customers feel

more confident.
SCM facilitates frequent feedback on

build quality and product suitability.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 14

4 N

Core SCM Practices

Frequent feedback on build quality, and
product suitability

Version Management
Release Management

Build Management

Unit & Regression Testing

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 15

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

~

SCM Concepts & Definitions

Codeline/Branch

Versioning Concepts
Configuration

Version
Revision
Label
Workspace
© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 16
Codeline

A codeline contains every version of every
artifact over one evolutionary path.

\

N B &

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 17

-

~

Branching

\

Branch: A codeline that contains work that derives
(and diverges) from another codeline.

Branch of a file: A revision of a file that uses the
trunk revision as a starting point.

/main

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 18

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Versions, Revisions and Labels

Revision: An element at a point in time.
Configuration: A snapshot of the codeline at a

point in time.
Version: A labeled configuration.

- o el b

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 19

4 N

Workspace

Everything you need to build an application:
Code

Scripts
Database resources, etc

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 20

4 N

Part II: The Patterns

N — Y

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 21

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Active Development
Line

Workspace Patterns
Private Workspace
S j

Private System
Build

Integration
Build

Smoke Test

Task Level Ronaite
Commit P Y

Third Party
K Unit Test Regression Test Codeline

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 22

4 N

Codeline Patterns

Active Development

ine

Release Prep
Codeline

Private Versions Release Line Task Branch

Codeline Policy /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 23

\

4 N

A Word about Context

Smoke Test
Active Development “completes” ACltIVe
Line Development Line.

Smoke Test applies
in the context of

Active Development
Line.

Arrows point from

LTS:’J M context to the “next
pattern.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 24

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Agility and Codeline Structures

How many codelines should you be
working from?

What should the rules be for check-ins?
Codelines are the integration point for

everyone’s work.

Codeline structure determines the pulse
of the project.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 25

4 N

Mainline

You want to simplify
your codeline

structure.

How do you keep
the number of

codelines
manageable (and

minimize merging)?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 26

4 N

Mainline (Forces & Tradeoffs)

A Branch is a useful tool for isolating yourself
from change.

Branching can require merging, which can be

difficult.
Separate codelines seem like a logical way to

organize work.

You will need to integrate all of the work
together.

You want to maximize concurrency while
minimizing problems cause by deferred

K integration. /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 27

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Mainline (Solution)

When in doubt, do all of your work off of
a single Mainline.

=

= Y,

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 28

4 N

Mainline (Unresolved)

Simplicity with speed and enough stability:
Active Development Line.

Active Development
Line

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 29

4 N

Active Development Line

You are developing
on a Mainline.

How do you keep a
rapidly evolving
codeline stable

enough to be
useful (but not

impede progress)?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 30

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Active Development Line

(Forces & Tradeoffs)

A Mainline is a synchronization point.
More frequent check-ins are good.

A bad check-in affects everyone.
If testing takes too long: Fewer check-

ins:
Human Nature

Time
Fewer check-ins slow project’s pulse.

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 31

Phase Shift

Long running tests increase the likelihood of

phase shift.
Your Test passes here [\ Your Test Would

Fail Now
You Edit You Test
They Edit

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 32

-

Active Development Line

(Solution)

Use an Active Development Line.
Have check-in policies suitable for a

“good enough” codeline.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 33

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Active Development Line

(Unresolved)

Doing development: Private Workspace
Keeping the codeline stable: Smoke Test

Managing maintenance versions:
Release Line.

Dealing with potentially tricky changes:
Task Branch.

Avoiding code freeze: Release Prep
Codeline.

\

/

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

34

/

~

Active Development Line

Context

Active Development
Line

Private Workspace Release Line ReleaselPrep Task Branch
Codeline

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 35

-

Private Workspace

You want to support an
Active Development
Line.

How do you keep
current with a dynamic

codeline and also
make progress without
being distracted by

your environment
changing from beneath
you?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 36

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Private Workspace

(Forces & Tradeoffs)

Frequent integration avoids working with
old code.

People work in discrete steps:
Integration can never be “continuous.”

Sometimes you need different code.
Too much isolation makes life difficult for

all.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 37

4 N

Private Workspace (Solution)

Create a Private Workspace that
contains everything you need to build a

working system. You control when you
get updates.

Before integrating your changes:
Update

Build
Test

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 38

4 N

Private Workspace (Unresolved)

Populate the workspace: Repository.
Manage external code: Third Party

Codeline.
Build and test your code: Private System

Build.

Integrate your changes with others:
Integration Build.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 39

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

Private Workspace

Context
Active Development
Line

Private
Workspace

Third Party . Integration Private System
G&J ey || "R LE%
40

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

4 N

Repository

Private Workspace
and Integration Build

need components.
How do you get the

right versions of
the right
components into a

new workspace?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 41

4 N

Repository (Forces & Tradeoffs)

Many things make up a workspace:
code, libraries, scripts.

You want to be able to easily build a
workspace from nothing.

These components could come from a
variety of sources (3" Parties, other

groups, etc).

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 42

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Repository (Solution)

Have a single point of access for
everything.

Have a mechanism to support getting
things from the Repository.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 43

/

Mapping from Repository to
Workspace

/Repository

IprojectA /3Party

Isrc i /cmpAi /cmpBI

IprojectA

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 44

4 N

Repository (Unresolved)

Manage external components: Third

Party Codeline
Private Integration
Workspace Build

Repository

Third Party
Codeline /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 45

\

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

Private System Build

\

You need to build to
test what is in your
Private Workspace.

How do you verify
that your changes
do not break the
system before you
commit them to the
Repository?

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

46

/

Private System Build
(Forces & Tradeoffs)

\

Developer Workspaces have different
needs than the system build.

The system build can be complicated.

Checking things in that break the
Integration Build is bad.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

47

-

Private System Build (Solution)

\

Build the system using the same
mechanisms as the central integration
build, a Private System Build.

This mechanism should match the
integration build.

Do this before checking in changes!

Update to the codeline head before a
build.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

48

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

Private System Build

(Unresolved)

Testing what you built: Smoke Test.

Private
Workspace

Private System
Build

Smoke Test

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 49

4 N

Integration Build

What is done in a
Private Workspace

must be shared with
the world.

How do you make
sure that the code
base always builds

reliably?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 50

-

Integration Build

(Forces & Tradeoffs)

People do work independently.
Private System Builds are a way to

check the build.
Building everything may take a long

time.
You want to ensure that what is

checked-in works.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 51

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

4 N

Integration Build (Solution)

Do a centralized build for the entire code
base.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 52

4 N

Integration Build (Unresolved)

Testing that the product
of the build still works:
Smoke Test.

Private
Workspace
. Int: ti
Build products may
need to be available for

clients to check out.
Figure out what broke a b‘i’ﬂd @ﬂ

build: Task Level

Commit.
Task Level
K Commit /
© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 53

4 N

Third Party Codeline

Private Workspaces
and the Repository
need the right

versions of external
components.

How do you
coordinate
versions of external

components with
your versions?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 54

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

Third Party Codeline
(Forces & Tradeoffs)

\

Vendor releases do not match your
releases.

Sometimes you alter external code
(open source, etc) or apply patches.

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 55

/

Third Party Codeline (Solution)

~

\

Use the same mechanisms as you do for
your code to create a Third Party
Codeline.

Label the codeline to associate
snapshots with your versions.

Private Rl
Workspace P i
Third Party
Codeline

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 56

-

Third Party Codeline (Structure)

~

\

‘ /build H changes H build H changes‘

O

i Vendor i Vendor
Release 1 Release 2

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 57

© 2003 Steve Berczuk

Patterns for Agile Software Configuration Management

/

Task Level Commit

\

You need to
associate changes
with an Integration
Build.

How much work
should you do
before checking in
files?

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

58

/

Task Level Commit
(Forces & Tradeoffs)

\

The smaller the task, the easier it is to
roll back.

A check-in requires some work.

It is tempting to make many small
changes per check-in.

You may have an issue system that
identifies units of work.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

59

-

Task Level Commit (Solution)

~

\

Do one commit per small-grained task.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

60

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

4 N

Codeline Policy

Active Development
Line and Release

Line (etc) need to
have different rules.

How do developers
know how and
when to use each

codeline?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 61

4 N

Codeline Policy

(Forces & Tradeoffs)

Different codelines have different needs,
and different rules.

You need documentation. (But how
much?)

How do you explain a policy?

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 62

4 N

Codeline Policy (Solution)

Define the rules for each codeline as a
Codeline Policy. The policy should be

concise and auditable.
Consider tools to enforce the policy.

Active
Development
Line

Private
Versions

Release Prep

Codeline Task Branch

Release Line

Codeline
Policy /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 63

\

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

Smoke Test

\

You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.
How do you verify
that the system still
works after a
change?

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

64

/

Smoke Test
(Forces & Tradeoffs)

\

Exhaustive testing is best for ensuring
quality.
The longer the test, the longer the
check-in

Less frequent check-ins.

Baseline more likely to have moved forward.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

65

-

Smoke Test (Solution)

~

\

Subject each build to a Smoke Test that
verifies that the application has not
broken in an obvious way.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

66

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

4 N

Smoke Test (Unresolved)

A Smoke Test is not
comprehensive. You

Active Development
Line

will need to find:
Problems you think are

Private System Integration
Build Build

fixed: Regression Test
Low level accuracy of

interfaces: Unit Test

Unit Test Regression
K Test /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 67

4 N

Unit Test

A Smoke Test is not
enough to verify that

a module works at a
low level.

How do you test
whether a module
still works after you

make a change?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 68

4 N

Unit Test (Forces & Tradeoffs)

Integration identifies problems, but
makes it harder to isolate problems.

Low level testing is time consuming.
When you make a change to a module

you want to check to see if the module
still works before integration so that you

can isolate the problems.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 69

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

4 N

Unit Test (Solution)

Develop and run Unit Tests

Smoke Test

Unit Test

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 70

4 N

Regression Test

A Smoke Test is
good but not

comprehensive.
How do you ensure

that existing code
does not get worse
after you make

changes?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 71

-

Regression Test

(Forces & Tradeoffs)

Comprehensive testing takes time.
It is good practice to add a test

whenever you find a problem.
When an old problem recurs, you want

to be able to identify when this
happened.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 72

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

Regression Test (Solution)

~

\

Develop Regression Tests
based on test cases that the
system has failed in the past.
Run Regression Tests
whenever you want to validate
the system.

Smoke Test

Regression
Test

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

73

/

Private Versions

\

An Active Development
Line will break if people

check in half-finished
tasks.

How can you
experiment with
complex changes and
still get the benefits of
version management?

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

-

Private Versions
(Forces & Tradeoffs)

~

\

Sometimes you may want to checkpoint
an intermediate step of a long, complex
change.

Your version management system
provides the facilities for checkpointing.

You don’t want to publish intermediate
steps.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

75

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

\

~

Private Versions (Solution)

Provide developers with a mechanism for
checkpointing changes using a simple
interface.
Implement as:

Private History

A Private Repository

A Private Branch

[Compare with Task Branch for long lived /joint

efforts.]

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 76

/

Release Line

\

You want to maintain
an Active
Development Line.

How do you do
maintenance on a
released version
without interfering
with current work?

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 7

-

Release Line
(Forces & Tradeoffs)

\

A codeline for a released version needs
a Codeline Policy that enforces stability.

Day-to-day development will move too
slowly if you are trying to always be
ready to ship.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 78

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

Release Line (Solution)

Split maintenance/release Active
activity from the Active
Development Line and into a

Release Line.

Allow the line to progress on its
own for fixes.

Line

Development

Release Line

/Release-1 H fixes ‘
K ‘ /main H Release 1 work /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

79

/

Release Prep Codeline

\

You want to maintain
an Active
Development Line.
How do you stabilize
a codeline for an
imminent release
while allowing new
work to continue on

an active codeline?

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

-

Release-Prep Codeline
(Forces & Tradeoffs)

~

\

You want to stabilize a codeline so you
can ship it.

A code freeze slows things down too
much.

Branches have overhead.

)

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

81

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

Release Prep Codeline

(Solution)

Branch instead of freeze. Create a
Release Prep Codeline (a branch) when
code is approaching release quality.

Active

Development
Line

Leave the Mainline for active
development.

The Release Prep Codeline becomes
the Release Line (with a stricter policy)

Note: If only a few people are doing

Release Prep
Codeline

work on the next release, consider a
Task Branch instead.

/

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 82

4 N

Task Branch

Some tasks have
intermediate steps that
would disrupt an Active

Development Line.
How can your team

make multiple, long-
term, overlapping
changes to a codeline

without compromising
its integrity?

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 83

-

Task Branch

(Forces & Tradeoffs)

Version Management is a
communication mechanism.

Sometimes only part of a team is
working on a task.

Some changes have many steps.
Branching has overhead.

N /

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 84

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

/

Task Branch (Solution)

Create a Task Branch off of the
Mainline for each activity that has

Integrate this codeline back into the
Mainline when done.

Be sure to integrate changes from
the Mainline into this codeline as
you go.

[Compare with Private Versions.]

\

Active

Line

significant changes for a codeline. Development

Task Branch

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

85

/

Moving Forward: Wrap Up

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

86

-

Our Book

SOFTWARE CONFIGURATION
MANAGEMENT PATTERNS

Effective Teamwork, Practical Integration

Professional.

Pub Nov 2002 By
Addison-Wesley

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management

87

© 2003 Steve Berczuk

NY

Patterns for Agile Software Configuration Management

4 N

Other Pointers

www.scmpatterns.com
acme.bradapp.net

www.berczuk.com
www.cmcrossroads.com

steve@berczuk.com

\

© 2003 Steve Berczuk Patterns for Agile Software Configuration Management 88

© 2003 Steve Berczuk

€.

