
Copyright © 2006 Steve Berczuk

Lifecycle Management Starts at
Home:

Patterns for Effective Software
Configuration Management

Copyright © 2006 Steve Berczuk

Agenda & Goals
● Agenda

■ SCM and The Development Process
■ Agile SCM
■ Codeline and Workspace Patterns
■ Questions

● Goals
■ Discuss some common problems
■ Learn how taking a “Big Picture View” of SCM will you

make your process more effective
■ Understand how working with an Active Development Line

model simplifies your process

Copyright © 2006 Steve Berczuk

The Context
● SCM is Part of the

Puzzle:
■ Architecture
■ Software

Configuration
Management

■ Organization &
Culture

The Goal: Working software that delivers value.

Copyright © 2006 Steve Berczuk

Problems
● Not Enough Process:

■ “Builds for me…”
■ “Works for me!”
■ “The build is broken again!”
■ “What branch do I work off of?”

● Process Gets in the Way:
■ Pre-check-in testing takes too long
■ Code Freezes

● Long integration times at end of project
■ “Fixing it” in integration

Copyright © 2006 Steve Berczuk

Foundations of a Solution
● An Agile Approach to

SCM
■ Effective (not

Unproductive) SCM
■ Agile Manifesto

Principles applied to
SCM

● The SCM Pattern
Language
■ A Pattern Language to

help you realize an Agile
SCM Environment

● Integration. Starting in
the developer
workspace.

Copyright © 2006 Steve Berczuk

Traditional View of SCM
● Configuration

Identification
● Configuration

Control
● Status Accounting
● Audit & Review
● Build Management
● Process

Management, etc

Copyright © 2006 Steve Berczuk

Agile SCM?
● Individuals and Interactions over Processes and

Tools
■ SCM Tools should support the way that you work, not the

other way around.
● Working Software over Comprehensive

Documentation
■ Executable Knowledge over Documented Knowledge. (e.g.

“one step” workspace set up.)
● Customer Collaboration over Contract Negotiation

■ The codeline is the state of the system. Iterate and change
course. Manage expectations.

● Responding to Change over Following a Plan
■ SCM is about facilitating change, not preventing it.

Feedback through build and test processes.

Copyright © 2006 Steve Berczuk

Effective SCM
● Who?
● What?
● When?
● Where?
● Why?
● How?

Think about the entire value chain.

Copyright © 2006 Steve Berczuk

What Agile SCM is Not
● Lack of process
● Chaos
● Lack of control

Agile SCM is about having an Effective
SCM process that helps get work done.

Copyright © 2006 Steve Berczuk

The Agile SCM Cycle

Build/Integrate

Commit

Code

Test

Resynch
Frequently

Copyright © 2006 Steve Berczuk

Core SCM Practices
● Frequent feedback on build quality and

product suitability through:
■ Version Management
■ Release Management
■ Build Management
■ Unit & Regression Testing

Copyright © 2006 Steve Berczuk

Creating Agile SCM Environments
● Decide on a goal

■ Choose an appropriate Codeline Structure and
set up the related policy

● Create a process to set up workspaces
■ Private
■ Integration
■ Build & Deploy is an Iteration 0 Story

● Integrate frequently at all levels
■ Developer Workspace
■ Integration Build

● Deploy frequently
● Test Frequently

Copyright © 2006 Steve Berczuk

The SCM Pattern Language

Mainline

Private
Workspace

Active Development
 Line

Integration
Build

Private
System Build

Repository

Third Party
Codeline

Task Level
Commit

Release Line Private
 Versions

Task BranchRelease-Prep
Codeline

Codeline
Policy

Regression
TestUnit Test

Smoke Test

Build TestCollaborate

Copyright © 2006 Steve Berczuk

Starting at Home
● Create a Workspace
● Integrate and Build Locally
● Test Locally
● Commit Changes
● Integrate, Build Test in the Integration

Workspace

Copyright © 2006 Steve Berczuk

Workspace Patterns
Active Development

Line

Private System
Build

Integration
Build

Third Party
Codeline

Smoke Test Task Level
Commit Repository

Unit Test Regression Test

Private Workspace

Copyright © 2006 Steve Berczuk

Active Development Line
● You are developing

on a Mainline.
● How do you keep a

rapidly evolving
codeline stable
enough to be
useful (but not
impede progress)?

Copyright © 2006 Steve Berczuk

Active Development Line (Forces)

● A Mainline is a synchronization point.
● More frequent check-ins are good.
● A bad check-in affects everyone.
● If testing takes too long: Fewer check-ins:

■ Human Nature
■ Time

● Fewer check-ins slow a project’s pulse.

Copyright © 2006 Steve Berczuk

Active Development Line(Solution)

● Use an Active Development Line.
● Have check-in policies suitable for a

“good enough” codeline.

Copyright © 2006 Steve Berczuk

Active Development Line (Issues)

● Doing development: Private Workspace
● Managing maintenance versions: Release Line
● Dealing with potentially tricky changes: Task

Branch
● Avoiding code freeze: Release Prep Codeline

Active Development
Line

Private Workspace Release Line Release Prep
Codeline

Task Branch

Mainline

Copyright © 2006 Steve Berczuk

Private Workspace
● You want to support an

Active Development
Line.

● How do you keep
current with a
dynamic codeline
and also make
progress without
being distracted by
your environment
changing from
beneath you?

Copyright © 2006 Steve Berczuk

Private Workspace (Forces)
● Frequent integration avoids working

with old code.
● People work in discrete steps:

Integration can never be “continuous.”
● Sometimes you need different code.
● Too much isolation makes life difficult

for all.

Copyright © 2006 Steve Berczuk

Private Workspace (Solution)
● Create a Private Workspace that

contains everything you need to build a
working system. You control when you
get updates.

● Before integrating your changes:
■ Update
■ Build
■ Test

Copyright © 2006 Steve Berczuk

Private Workspace(Unresolved)

● Populate the workspace: Repository
● Manage external code: Third Party Codeline
● Build and test your code: Private System Build
● Integrate your changes with others: Integration

Build

Private
Workspace

Integration
Build

Private System
Build

Third Party
Codeline Repository

Active Development
Line

Copyright © 2006 Steve Berczuk

Repository
● Private Workspace

and Integration
Build need
components.

● How do you get
the right versions
of the right
components into a
new workspace?

Copyright © 2006 Steve Berczuk

Repository (Forces)
● You want to be able to easily build a

workspace from nothing.
● Many things make up a workspace:

code, libraries, scripts
● These components could come from a

variety of sources (3rd Parties, other
groups, etc).

Copyright © 2006 Steve Berczuk

Repository (Solution)
● Have a single point of access for

everything.
● Have a mechanism to support easily

getting things from the Repository.
■ Install VC tools, compiler, etc
■ Check out a project
■ Run a build script.

● Document this process; Briefly
■ “Getting Started” page on a wiki, for

example.

Copyright © 2006 Steve Berczuk

Repository (Unresolved)
● Manage external components: Third

Party Codeline

Private
Workspace

Integration
Build

Repository

Third Party
Codeline

Copyright © 2006 Steve Berczuk

Private System Build
● You need to build to

test what is in your
Private Workspace.

● How do you verify
that your changes
do not break the
system before you
commit them to
the Repository?

Copyright © 2006 Steve Berczuk

Private System Build (Forces)
● Developer Workspaces have different

requirements than the system
integration workspace.

● The system build can be complicated.
● Checking things in that break the

Integration Build is bad.

Copyright © 2006 Steve Berczuk

Private System Build (Solution)
● Build the system using the same

mechanisms as the central integration
build, a Private System Build.

● This mechanism should match the
integration build as much as possible.

● Do this before checking in changes!
● Update to the codeline head before a

build.

Copyright © 2006 Steve Berczuk

Private System Build (Issues)
● Testing what you built: Smoke Test

Private
Workspace

Private System
Build

Smoke Test

Copyright © 2006 Steve Berczuk

Dimensions Of Testing
● Authorship

■ Who writes the test?
● Origin

■ When do you write the tests?
● Purpose
● Isolation

■ How Isolated is the component that you
test?

Copyright © 2006 Steve Berczuk

Types of Tests

Common Name Author Created Isolation Purpose

Unit/
Programmer

Developer During Unit
Dev

High Testing
functional
components

Smoke
(Integration)

Developer
QA

“Integration” Low Verify
minimal
operation.

Regression Support
QA
Developer

Post
Release

Low Verify that
problems do
not resurface

Copyright © 2006 Steve Berczuk

Smoke Test
● You need to verify an

Integration Build or a
Private System Build so
that you can maintain
an Active Development
Line.

● How do you verify
that the system still
works after a change?

Copyright © 2006 Steve Berczuk

Smoke Test (Forces)
● Exhaustive testing is best for ensuring

quality.
● Longer tests imply longer check-ins

■ Less frequent check-ins.
■ Baseline more likely to have moved

forward.

Copyright © 2006 Steve Berczuk

Smoke Test (Solution)
● Subject each build to a Smoke Test

that verifies that the application has not
broken in an obvious way.

Copyright © 2006 Steve Berczuk

Smoke Test (Unresolved)
● A Smoke Test is not

comprehensive. You
will need to find:
■ Problems you think

are fixed: Regression
Test

■ Low level accuracy of
interfaces: Unit Test

Integration
Build

Private System
Build

Smoke Test

Unit Test Regression
Test

Active Development
Line

Copyright © 2006 Steve Berczuk

Unit Test
● A Smoke Test is not

enough to verify that
a module works at a
low level.

● How do you test
whether a module
still works after
you make a
change?

Copyright © 2006 Steve Berczuk

Unit Test (Forces & Tradeoffs)
● Integration identifies problems, but

makes it harder to isolate problems.
● Low level testing is time consuming.
● When you make a change to a module

you want to check to see if the module
still works before integration so that
you can isolate the problems.

Copyright © 2006 Steve Berczuk

Unit Test (Solution)
● Develop and run Unit Tests
● Unit Tests should be:

■ Automatic/Self-evaluating
■ Fine-grained
■ Isolated
■ Simple to run

● Also known as Programmer Tests  
- J.B. Rainsberger

Smoke Test

Unit Test

Copyright © 2006 Steve Berczuk

Regression Test
● A Smoke Test is

good but not
comprehensive.

● How do you
ensure that
existing code does
not get worse after
you make
changes?

Copyright © 2006 Steve Berczuk

Regression Test (Forces)

● Comprehensive testing takes time.
● It is good practice to add a test whenever

you find a problem.
● When an old problem recurs, you want to

be able to identify when this happened.

Copyright © 2006 Steve Berczuk

Regression Test (Solution)
● Develop Regression Tests

based on test cases that the
system has failed in the past.

● Run Regression Tests
whenever you want to validate
the system.

Smoke Test

Regression
Test

Copyright © 2006 Steve Berczuk

Integration Build
● What is done in a

Private Workspace
must be shared with
the world.

● How do you make
sure that the code
base always builds
reliably?

Copyright © 2006 Steve Berczuk

Integration Build (Forces)
● People do work independently.
● Private System Builds are a way to

check the build.
● Building everything may take a long

time.
● You want to ensure that what is

checked-in works.

Copyright © 2006 Steve Berczuk

Integration Build (Solution)
● Do a centralized build for the entire

code base.

Copyright © 2006 Steve Berczuk

Integration Build (Unresolved)
● Testing that the product of

the build still works: Smoke
Test

● Build products may need to
be available for clients to
check out

● Figure out what broke a
build: Task Level Commit

Private
Workspace

Integration
Build

Task Level
Commit

Smoke TestRepository

Copyright © 2006 Steve Berczuk

Task Level Commit
● You need to

associate changes
with an Integration
Build.

● How much work
should you do
before checking in
changes?

Copyright © 2006 Steve Berczuk

Task Level Commit (Forces)
● The smaller the task, the easier it is to

roll back.
● A check-in requires some work.
● It is tempting to make many small

changes per check-in.
● You may have an issue tracking

system that identifies units of work.

Copyright © 2006 Steve Berczuk

Task Level Commit (Solution)
● Do one commit per small-grained task.

Copyright © 2006 Steve Berczuk

The Lifecycle Starts at Home
● Good Developer Workspace Process
● Frequent Integration
● Testing
● Feedback

Copyright © 2006 Steve Berczuk

The SCM Patterns Book
● Pub Nov 2002 By

Addison-Wesley
Professional.

● ISBN: 0201741172
● Web Sites:

■ www.scmpatterns.com
■ www.berczuk.com
■ www.cmcrossroads.com

Copyright © 2006 Steve Berczuk

Questions?

