
1

Effective SCM: Better

Feedback, Higher Quality and

Happier Stakeholders
Steve Berczuk

Sr Software Engineer

Aveksa, Inc

Waltham, MA

steve@berczuk.com

Agenda

• SCM and the Development Process.

• Common Problems

• SCM Concepts

• Solutions and Patterns for Better SCM

• Questions

What is SCM?

• Software

Configuration

Management

• Version

Management

• Configuration

Identification

• Anything Else?



2

Traditional View of SCM

• Configuration

Identification

• Configuration Control

• Status Accounting

• Audit & Review

• Build Management

• Process

Management, etc

Agile/Effective SCM

• Who?

• What?

• When?

• Where?

• Why?

• How?

Focus on processes that add value.

Why Do We Do SCM?

• Control.

• Adaptability.

• Robustness.

• Identification.

• ??



3

Who Does SCM?

• Release Engineers.

• Developers.

• Customers?

• ??

SCM and the Big Picture

• Architecture

• Culture/Organization

• Build

• Test

• SCM

– Version

Management

BuildTest

SCMArchitecture

Organization Culture

Common Problems (I)

• Not Enough Process

– “Builds for me!”

– “Works for me…!”

– “The build is broken

again!”

– Ad-hoc code sharing



4

Common Problems (II)

• Process Gets in the Way.

– Pre-check-in testing takes

too long

– Code freeze/idle resources

• Long Integration Times at

Project Release.

– “Fixing it” in integration

Agility and SCM

• Agile Methods emphasize:

– Feedback

– Communication

– Process that adds value

• Agile SCM

– Effective SCM

– Simple SCM

– Not only for Agile teams

Feedback and The Team

R&D

QA

Product

Owners

Release

Engineering

R&D

Release

Engineering

QA

Product

Owners



5

The Agile SCM Cycle

Build/Integrate

Commit

Code

Test

Resynch

Frequently

Continuous Refinement

• At each phase do as much as needed.

– But no more

• Feedback to decide when to add processes.

– But only if it adds value

Developer Customer

Themes

• Automate where

possible.

• Simple steps.

• Reproducible steps.

• “Fractal” processes.



6

Concepts

• Codeline.

– Merge, Branch, Stream

• Workspace.

• Build.

Build
Product

New!

Enough Control For The Task

• Codelines.

• Policies.

• Enforcement.

• Automation.

Workspace

• Everything you need

to build an

application:

– Code

– Scripts

– Database resources,

etc



7

Creating an Agile SCM Environment

• Decide on a goal.

• Choose an appropriate Codeline Structure.
– Establish the related policy.

• Create a process to set up workspaces.
– Private

– Integration

• Build & Deploy is an Iteration 0 Story.

• Integrate frequently at all levels.
– Developer Workspace

– Integration Build

• Deploy frequently.

• Test.

The SCM Pattern Language
Mainline

Private 

Workspace

Active Development

 Line

Integration

Build

Private 

System Build

Repository

Third Party

Codeline

Task Level

Commit

Release Line
Private

 Versions
Task Branch

Release-Prep

Codeline

Codeline

Policy

Regression
Test

Unit Test

Smoke Test

Build TestCollaborate

Today

• Codelines

• Workspaces

• Build

• Test



8

Tools

• Tools help.

• Tools should

support your

process.

– Don’t pick tool first.

• Follow tool’s

paradigm.

– Once you are

committed.

Codeline Structure Issues

• How many codelines should you be
working from?

• What should the rules be for check-ins?

• Codelines are the integration point for
everyone’s work.

• Codeline structure determines the
rhythm of the project.

Mainline

• You want to simplify

your codeline

structure.

• How do you keep

the number of

codelines

manageable (and

minimize merging)?



9

Mainline (Forces & Tradeoffs)

• A Branch is a tool for isolating work.

– Branching can require merging.

– Merging can be difficult.

• Codelines are a logical way to organize work.

• You will need to integrate everything eventually.

• You want to maximize concurrency.

• You want to minimize problems cause by

deferred integration.

Too Many Branches?

Main

1.0

1.1

1.1.1

Change

Request

Or the right number?

Mainline (Solution)

• When in doubt, do all of your work off of a single
Mainline.

• Understand why you want to branch, and consider
the costs.

• Unresolved:
– Simplicity with speed and enough stability: Active

Development Line



10

Active Development Line

• You are developing

on a Mainline.

• How do you keep a

rapidly evolving

codeline stable

enough to be useful

(but not impede

progress)?

Active Development Line

(Forces)

• A Mainline is a synchronization point.

• More frequent check-ins are good.

• A bad check-in affects everyone.

• If testing takes too long: Fewer check-ins:

– Human Nature

– Time

• Fewer check-ins imply a slower rhythm.

Active Development Line

• Use an Active Development Line.

• Have “good enough” check-in policies for.

– More structure where needed.

• Establish practices for an active codeline:

– Doing development: Private Workspace

– Keeping the codeline stable: Smoke Test

– Managing maintenance versions: Release Line

– Dealing with potentially tricky changes: Task
Branch

– Avoiding code freeze: Release Prep Codeline



11

Private Workspace
• You want to support an

Active Development Line.

• How do you keep current

with a dynamic codeline
and also make progress

without being distracted by

your environment

changing from beneath

you?

Private Workspace (Forces)
• Frequent integration avoids working with

old code.

• People work in discrete steps: Integration

can never be “continuous.”

• Sometimes you need different code.

• Excessive isolation makes life difficult for

all.

Private Workspace (Solution)

• Create a Private Workspace that contains
everything you need to build a working
system.

– You control when you get updates.

– You can test before committing changes.

• Before integrating your changes:

– Update your workspace.

– Build your workspace.

– Test your code and the system.



12

Private Workspace Example

• Workspace

– App Server

– Database

Schema

– Code for Web

App

– Test CRS Login

– (Build/Deploy

and

Configuration

Tools & Scripts)

Private Workspace Requires 
• Populate the workspace: Repository

• Manage external code: Third Party Codeline

• Build and test your code: Private System Build

• Integrate your changes with others and test:
Integration Build

Repository

• Private Workspace

and Integration Build

need components.

• How do you get the

right versions of the

right components

into a new

workspace?



13

Repository (Forces & Tradeoffs)

• Many things make up a workspace

– code, libraries, scripts.

• You want to be able to easily build a
workspace from nothing.

– New developers

– Integration workspaces

• Components could come from a variety of
sources (3rd Parties, other groups, etc).

• Reproducibility

Repository (Solution)
• Have a single point of access for everything.

• Have a mechanism to support easily getting things from
the Repository.
– Install Version Manager Client

– Get Project from Version Management

– Build, Deploy, Configure (Ant target, Maven goal)

– Simple, repeatable process.

• Unresolved:
– Manage external components:

Third Party Codeline

Examples

• “Getting Started” wiki or web page.

• Maven script (scm:bootstrap)

• Ant script.

• Repository “check-out” using repository

layout.



14

Task Level Commit

• You need to

associate changes

with an Integration

Build.

• How much work

should you do

before checking in

files?

Task Level Commit (Forces)

• Smaller tasks: easier rollback.

• Larger commits: less testing time.

– If using CI perhaps fewer builds.

• Many small issues: 1 check-in is tempting.

• Issue tracking systems

– Identify units of work.

– Release notes.

Task Level Commit (Solution)

• Do one commit per small-grained task.

• Associate changes with issues.

– Tool support or convention.



15

Types of Tests

Low

Low

High

Isolation PurposeCreatedAuthorCommon Name

Verify that

problems do

not resurface

Post ReleaseSupport

QA

Developer

Regression

Verify

minimal

operation.

“Integration”Developer

QA

Smoke

(Integration)

Testing

functional

components

During Unit

Dev

DeveloperUnit/Programmer

Smoke Test

• You need to verify an
Integration Build or a
Private System Build
so that you can
maintain an Active
Development Line.

• How do you verify
that the system still
works after a
change?

Smoke Test (Forces)

• Exhaustive testing is best for ensuring quality.

• Longer tests imply longer check-ins.

– Less frequent check-ins.

– Baseline more likely to have moved forward.

• People have a need to move forward.

• Stakeholders have a need for quality and
progress.

• (Automated) Test Execution Time is often idle
time.



16

Smoke Test (Solution)

• Subject each change to a Smoke Test that

verifies that the application has not broken in

an obvious way.

– Before a commit. (after Private System Build)

– During Integration Build

• A Smoke Test is not comprehensive. You will

need to find:

– Problems you think are fixed: Regression Test

– Low level accuracy of interfaces: Unit Test

Smoke Test Example

• Start up application

– Seems trivial

– Can ID issues with

• Configuration

• Packaging

• Connectivity with databases

Unit Test

• A Smoke Test is not

enough to verify that

a module works at a

low level.

• How do you test

whether a module

still works after you

make a change?



17

Unit Test (Forces)

• Integration identifies problems, but makes

it harder to isolate problems.

• Low level testing is time consuming.

• After a change to a module things can

break.

– Check to see if the module still works before

integration

– You can isolate the problems.

Unit Test (Solution)

• Develop and run Unit Tests

• Almost nothing is too trivial to test.

• Unit Tests should be:

– Automatic/Self-evaluating

– Fine-grained

– Isolated

– Simple to run

• Also known as Programmer Tests
- J.B. Rainsberger

!

!

"

!

Regression Test

• A Smoke Test is good

– Not comprehensive.

• How do you ensure

that existing code

does not get worse

after you make

changes?



18

Regression Test (Forces)

• Comprehensive testing takes time.

• It is good practice to add a test whenever

you find a problem.

• When an old problem recurs, you want to

be able to identify when this happened.

Regression Test (Solution)

• Develop Regression Tests based

on test cases that the system

has failed in the past.

• Run Regression Tests whenever

you want to validate the system.

• You can run these tests as part

of an automated build (nightly or

more frequently).

And Now
Mainline

Private 

Workspace

Active Development

 Line

Integration

Build

Private 

System Build

Repository

Third Party

Codeline

Task Level

Commit

Release Line
Private

 Versions
Task Branch

Release-Prep

Codeline

Codeline

Policy

Regression
Test

Unit Test

Smoke Test

Build TestCollaborate



19

More than one codeline

• Stability

– Releases

• Variations

– Maintenance/Fixes

– Customer Specific

Changes

• Consider options

– Branches sometime

necessary.

Codeline Policy

• Active Development

Line and Release

Line (etc) need to

have different rules.

• How do developers

know how and when

to use each

codeline?

Codeline Policy (Forces)
• Different codelines:

– Have different needs

– Need different rules.

• People may not follow the rules.

• The rules need to make sense.

• How do you enforce/explain a policy?



20

Codeline Policy (Solution)

• Define the rules for each codeline as a

Codeline Policy. The policy should be

concise and auditable.

• Consider tools to enforce the policy.

• Consider branching on a policy change.

Sample Codeline Policies

• Active Development Line

• Release Line

• Other

Policies: The Tofu Scale
• Laura Wingerd

(Perforce Software)

• Consider:

– How close software is to
being released.

– How thoroughly must
changes be reviewed and
tested.

– How much impact a change
has on schedules.

– How much a codeline is
changing.

• See Practical Perforce for
more info

Release

Mainline

Development

Firm

Soft



21

Release Line

• You want to maintain

an Active

Development Line.

• How do you do

maintenance on a

released version

without interfering

with current work?

Release Line (Forces)
• A codeline for a released version needs a

Codeline Policy that enforces stability.

• Day-to-day development will move too

slowly if you are trying to always be ready

to ship.

Release Line (Solution)

• Split maintenance/release

activity from the Active

Development Line and into a

Release Line.

• Allow the line to progress on its

own for fixes.

• Propagate changes to Mainline

as appropriate.

/main Release 1 work

/Release-1 fixes



22

Private System Build

• You need to build to

test what is in your

Private Workspace.

• How do you verify

that your changes

do not break the

system before you

commit them to the

Repository?

Private System Build (Forces)

• Developer Workspaces have different
requirements than the system integration
workspace.

• The system build can be complicated.

• Committing changes that break the
Integration Build is bad.

• It can be costly to fix mistakes after they are
shared.

Private System Build (Solution)

• Build the system using the same
mechanisms as the central integration build,
a Private System Build.

– Should match the integration build.

– Do this before checking in changes!

– Update to the codeline head before a build.

• Unresolved:

– Testing what you built: Smoke Test



23

Integration Build

• What is done in a

Private Workspace

must be shared with

the world.

• How do you make

sure that the code

base always builds

reliably?

Integration Build (Forces)
• People do work independently.

• Private System Builds are a way to check

the build.

• Building everything may take a long time.

• You want to ensure that what is checked-

in works.

Integration Build (Solution)

• Do a centralized build for the entire code

base.

– Use automated tools: Cruise Control, SCM tool

Triggers, etc.

• Still Unresolved:
– Testing that the product still works: Smoke Test.

– Make build products available for clients in a Repository.

– Figure out what broke a build: Task Level Commit.



24

To Do List

• Long Term

– Architectural Changes

(configuration, modules)

• Medium Term

– Automated Testing

• Short Term

– Workspaces

– Continuous Integration

Resources/Places to Go
• www.scmpatterns.com

• www.berczuk.com

• www.cmcrossroads.com

• steve@berczuk.com

• Software Configuration

Management Patterns:Effective

Teamwork, Practical Integration

Other Books of Interest

• Pragmatic Version Control using Subversion
(Mike Mason)

• Pragmatic Version Control using CVS (Hunt
and Thomas)

• Practical Perforce (Wingerd)

• Pragmatic Project Automation (Mike Clark)

• Junit Recipes (Rainsberger)

• Release It!



25

Questions?

ISBN: 0201741172


