
1

��������	
�����������	

���������	��	
�������

���������	���������	���������	����������

December 8, 2004
Steve Berczuk

© 2004 Steve Berczuk

������

� Background
• SCM and The Development Process.
• Patterns and SCM Pattern Languages.
• Software Configuration Management 

Concepts.

� SCM Patterns
� Questions



2

© 2004 Steve Berczuk

���	


� Discuss Some Common Problems
� Learn how taking a “Big Picture View” of SCM 

will you make your process more effective.
� Understand how working with an Active 

Development Line Model Simplifies your 
process.

� See how to apply the SCM Pattern Language 
to help you to do this.

© 2004 Steve Berczuk

�������

� Software Developer, Architect, 
Consultant, Author

� Startup and established company 
experience

� Systems ranging from Travel Web sites, 
to enterprise systems, to space science 
systems.

� Agile and Iterative Development.



3

© 2004 Steve Berczuk

���������������������������

© 2004 Steve Berczuk

��� � �������	�� 


� “Builds for me…” 
� “Works for me!”
� Pre-check-in testing takes too long.
� The Build is Broken Again!
� Code Freezes.
� “What branch do I work off of?”
� Long integration times at end of project.



4

© 2004 Steve Berczuk

� ����
�����	�
��

� Individuals and Interactions over 
Processes and Tools
• SCM Tools should support the way that you 

work, not the other way around. 
� Working Software over Comprehensive 

Documentation
• SCM can automate development policies & 

processes: Executable Knowledge over 
Documented Knowledge. 

© 2004 Steve Berczuk

�� ����
�����	�
��

� Customer Collaboration over Contract 
Negotiation.
• SCM should facilitate communication among 

stakeholders and help manage expectations.

� Responding to Change over Following a 
Plan.
• SCM is about facilitating change, not 

preventing it.



5

© 2004 Steve Berczuk

 ��������	�!��"��#�$��

� Configuration 
Identification

� Configuration Control
� Status Accounting
� Audit & Review
� Build Management
� Process 

Management, etc

© 2004 Steve Berczuk

%##���&��$��

� Who?
� What?
� When?
� Where?
� Why?
� How?

Think about the entire value chain.



6

© 2004 Steve Berczuk

�����#������''	�

� Architecture
� Software 

Configuration 
Management

� Culture/Organization

The Goal: Working software that delivers value.

© 2004 Steve Berczuk

$����
����%���	���� ��	

� SCM Gives You:
• Reproducibility
• Integrity
• Consistency
• Coordination

� SCM Enables:
• Increased productivity
• Enhanced responsiveness to customers
• Increased quality



7

© 2004 Steve Berczuk

$���(�������	)�����

� Slow down development
� Frustrate developers
� Limit customer options

© 2004 Steve Berczuk

�	������(�#��������#�$��

� SCM is a set of structures and actions 
that enable you to build systems in 
repeatable, agile fashion while improving 
quality and helping your customers feel 
more confident.

� SCM facilitates frequent feedback on 
build quality and product suitability.



8

© 2004 Steve Berczuk

�����$����������


� Frequent feedback on build quality, and 
product suitability

� Version Management
� Release Management
� Build Management
� Unit & Regression Testing

© 2004 Steve Berczuk

%##���&������	����$������


� How many codelines should you be 
working from?

� What should the rules be for check-ins?
� Codelines are the integration point for 

everyone’s work.
� Codeline structure determines the 

rhythm of the project.



9

© 2004 Steve Berczuk

� �������������������
������*�������
�

� A pattern is a solution to a problem in a 
context.

� Patterns capture common knowledge.
� Pattern languages guide you in the 

process of building something using 
patterns. Each pattern is applied in the 
correct way at the correct time.

© 2004 Steve Berczuk

�������� ��������




10

© 2004 Steve Berczuk

 ���$���������*�������

Mainline

Private 
Workspace

Active Development
Line

Integration
Build

Private 
System Build

Repository

Third Party
Codeline

Task Level
Commit

Release Line Private
VersionsTask BranchRelease-Prep

Codeline

Codeline
Policy

Regression
TestUnit Test

Smoke Test

© 2004 Steve Berczuk

��� �������������+

� Smoke Test
“completes” Active 
Development Line.

� Smoke Test applies 
in the context of 
Active Development 
Line.

� Arrows point from 
context to the “next” 
pattern.

Active Development
Line

Smoke Test

Unit Test Regression Test



11

© 2004 Steve Berczuk

����	���

� You want to simplify 
your codeline 
structure.

� How do you keep 
the number of 
codelines 
manageable (and 
minimize merging)?

© 2004 Steve Berczuk

����	����,�����
�-� �����##
.

� A Branch is a useful tool for isolating yourself 
from change.

� Branching can require merging, which can be 
difficult.

� Separate codelines seem like a logical way to 
organize work.

� You will need to integrate all of the work 
together.

� You want to maximize concurrency while 
minimizing problems cause by deferred 
integration.



12

© 2004 Steve Berczuk

����	����,$�	����.

� When in doubt, do all of your work off of 
a single Mainline.

© 2004 Steve Berczuk

����	����,/���
�	&��.

� Simplicity with speed and enough stability: 
Active Development Line.

Active Development 
Line

Mainline



13

© 2004 Steve Berczuk

���&��(�&�	�0� ���*���

� You are developing 
on a Mainline.

� How do you keep a 
rapidly evolving 
codeline stable 
enough to be 
useful (but not 
impede progress)?

© 2004 Steve Berczuk

���&��(�&�	�0� ���*����,�����
�

-� �����##
.

� A Mainline is a synchronization point.
� More frequent check-ins are good.
� A bad check-in affects everyone.
� If testing takes too long: Fewer check-ins:

• Human Nature
• Time

� Fewer check-ins slow project’s pulse.



14

© 2004 Steve Berczuk

���
��$��#

� Long running tests increase the likelihood of 
phase shift.

You Edit
They Edit

You Test

Your Test passes here Your Test Would 
Fail Now

© 2004 Steve Berczuk

���&��(�&�	�0� ���*����

,$�	����.

� Use an Active Development Line.
� Have check-in policies suitable for a 

“good enough” codeline. 



15

© 2004 Steve Berczuk

���&��(�&�	�0� ���*���

,/���
�	&��.

� Doing development: Private Workspace
� Keeping the codeline stable: Smoke Test
� Managing maintenance versions: 

Release Line.
� Dealing with potentially tricky changes: 

Task Branch.
� Avoiding code freeze: Release Prep 

Codeline.

© 2004 Steve Berczuk

���&��(�&�	�0� ���*���

����+

Active Development 
Line

Private Workspace Release Line Release Prep
Codeline Task Branch

Mainline



16

© 2004 Steve Berczuk

���&���� ���
0���

� You want to support an 
Active Development 
Line.

� How do you keep 
current with a dynamic 
codeline and also 
make progress without 
being distracted by 
your environment 
changing from beneath 
you?

© 2004 Steve Berczuk

���&���� ���
0����

,�����
�-� �����##
.

� Frequent integration avoids working with 
old code.

� People work in discrete steps: 
Integration can never be “continuous.”

� Sometimes you need different code.
� Too much isolation makes life difficult for 

all.



17

© 2004 Steve Berczuk

���&���� ���
0����,$�	����.

� Create a Private Workspace that 
contains everything you need to build a 
working system. You control when you 
get updates.

� Before integrating your changes:
• Update
• Build
• Test

© 2004 Steve Berczuk

���&���� ���
0����,/���
�	&��.

� Populate the workspace: Repository.
� Manage external code: Third Party 

Codeline.
� Build and test your code: Private System 

Build.
� Integrate your changes with others: 

Integration Build.



18

© 2004 Steve Berczuk

���&���� ���
0���

����+

Private
Workspace

Integration
Build

Private System
Build

Third Party
Codeline Repository

Active Development
Line

© 2004 Steve Berczuk

1�0�
���)

� Private Workspace 
and Integration Build
need components.

� How do you get the 
right versions of 
the right 
components into a 
new workspace?



19

© 2004 Steve Berczuk

1�0�
���)�,�����
�-� �����##
.

� Many things make up a workspace: 
code, libraries, scripts.

� You want to be able to easily build a 
workspace from nothing.

� These components could come from a 
variety of sources (3rd Parties, other 
groups, etc).

© 2004 Steve Berczuk

1�0�
���)�,$�	����.

� Have a single point of access for 
everything.

� Have a mechanism to support easily 
getting things from the Repository.



20

© 2004 Steve Berczuk

$� ���� �


� You need to verify an 
Integration Build or a 
Private System Build
so that you can 
maintain an Active 
Development Line.

� How do you verify 
that the system still 
works after a 
change?

© 2004 Steve Berczuk

$� ���� �
�

,�����
�-� �����##
.

� Exhaustive testing is best for ensuring 
quality.

� The longer the test, the longer the 
check-in, resulting in:
• Less frequent check-ins. 
• Baseline more likely to have moved forward.



21

© 2004 Steve Berczuk

$� ���� �
�,$�	����.

� Subject each build to a Smoke Test that 
verifies that the application has not 
broken in an obvious way.

© 2004 Steve Berczuk

$� ���� �
�,/���
�	&��.

� A Smoke Test is not 
comprehensive. You 
will need to find:
• Problems you think are 

fixed: Regression Test
• Low level accuracy of 

interfaces: Unit Test

Integration
Build

Private System
Build

Smoke Test

Unit Test Regression 
Test

Active Development
Line



22

© 2004 Steve Berczuk

/��� �


� A Smoke Test is not 
enough to verify that 
a module works at a 
low level.

� How do you test 
whether a module 
still works after you 
make a change?

© 2004 Steve Berczuk

/��� �
�,�����
�-� �����##
.

� Integration identifies problems, but 
makes it harder to isolate problems.

� Low level testing is time consuming.
� When you make a change to a module 

you want to check to see if the module 
still works before integration so that you 
can isolate the problems.



23

© 2004 Steve Berczuk

/��� �
�,$�	����.

� Develop and run Unit Tests
� Unit Tests should be:

• Automatic/Self-evaluating
• Fine-grained
• Isolated
• Simple to run

� Also known as Programmer Tests 
- J.B. Rainsberger

Smoke Test

Unit Test

© 2004 Steve Berczuk

1����

���� �


� A Smoke Test is 
good but not 
comprehensive.

� How do you ensure 
that existing code 
does not get worse 
after you make 
changes?



24

© 2004 Steve Berczuk

1����

���� �
�

,�����
�-� �����##
.

� Comprehensive testing takes time.
� It is good practice to add a test whenever 

you find a problem.
� When an old problem recurs, you want to 

be able to identify when this happened.

© 2004 Steve Berczuk

1����

���� �
�,$�	����.

� Develop Regression Tests
based on test cases that the 
system has failed in the past.

� Run Regression Tests
whenever you want to validate 
the system.

Smoke Test

Regression
Test



25

© 2004 Steve Berczuk

1�	��
��*���

� You want to maintain 
an Active 
Development Line.

� How do you do 
maintenance on a 
released version 
without interfering 
with current work?

© 2004 Steve Berczuk

1�	��
��*����

,�����
�-� �����##
.

� A codeline for a released version needs 
a Codeline Policy that enforces stability.

� Day-to-day development will move too 
slowly if you are trying to always be 
ready to ship.



26

© 2004 Steve Berczuk

1�	��
��*����,$�	����.

� Split maintenance/release 
activity from the Active 
Development Line and into a 
Release Line. 

� Allow the line to progress on its 
own for fixes.

Active 
Development

Line

Release Line

/main Release 1 work

/Release-1 fixes

© 2004 Steve Berczuk

1�0�
���)�,/���
�	&��.

� Manage external components: Third 
Party Codeline

Private
Workspace

Integration
Build

Repository

Third Party
Codeline



27

© 2004 Steve Berczuk

���&���$)
�� ����	�

� You need to build to 
test what is in your 
Private Workspace.

� How do you verify 
that your changes 
do not break the 
system before you 
commit them to the 
Repository?

© 2004 Steve Berczuk

���&���$)
�� ����	��

,�����
�-� �����##
.

� Developer Workspaces have different 
requirements than the system integration 
workspace.

� The system build can be complicated.
� Checking things in that break the 

Integration Build is bad.



28

© 2004 Steve Berczuk

���&���$)
�� ����	��,$�	����.

� Build the system using the same 
mechanisms as the central integration 
build, a Private System Build.

� This mechanism should match the 
integration build.

� Do this before checking in changes! 
� Update to the codeline head before a 

build.

© 2004 Steve Berczuk

���&���$)
�� ����	��,/���
�	&��.

� Testing what you built: Smoke Test.

Private
Workspace

Private System
Build

Smoke Test



29

© 2004 Steve Berczuk

�������������	�

� What is done in a 
Private Workspace
must be shared with 
the world.

� How do you make 
sure that the code 
base always builds 
reliably?

© 2004 Steve Berczuk

�������������	��

,�����
�-� �����##
.

� People do work independently.
� Private System Builds are a way to 

check the build.
� Building everything may take a long 

time.
� You want to ensure that what is 

checked-in works.



30

© 2004 Steve Berczuk

�������������	��,$�	����.

� Do a centralized build for the entire code 
base.

© 2004 Steve Berczuk

�������������	��,/���
�	&��.

� Testing that the product 
of the build still works: 
Smoke Test.

� Build products may 
need to be available for 
clients to check out.

� Figure out what broke a 
build: Task Level 
Commit.

Private
Workspace

Integration 
Build

Task Level
Commit

Smoke TestRepository



31

© 2004 Steve Berczuk

 �
��*�&�	���� � �

� You need to 
associate changes 
with an Integration 
Build.

� How much work 
should you do 
before checking in 
files?

© 2004 Steve Berczuk

 �
��*�&�	���� � ��

,�����
�-� �����##
.

� The smaller the task, the easier it is to 
roll back.

� A check-in requires some work.
� It is tempting to make many small 

changes per check-in.
� You may have an issue tracking system 

that identifies units of work.



32

© 2004 Steve Berczuk

 �
��*�&�	���� � ��,$�	����.

� Do one commit per small-grained task.

© 2004 Steve Berczuk

����	������	��)

� Active Development 
Line and Release 
Line (etc) need to 
have different rules.

� How do developers 
know how and 
when to use each 
codeline?



33

© 2004 Steve Berczuk

����	������	��)�

,�����
�-� �����##
.

� Different codelines have different needs, 
and different rules.

� You need documentation. (But how 
much?)

� How do you explain a policy?

© 2004 Steve Berczuk

����	������	��)�,$�	����.

� Define the rules for each codeline as a 
Codeline Policy. The policy should be 
concise and auditable.

� Consider tools to enforce the policy.

Codeline
Policy

Private 
Versions Release Line Release Prep

Codeline Task Branch
Active

Development
Line



34

© 2004 Steve Berczuk

� ��0�/02�(�
������


© 2004 Steve Berczuk

 ���$��������
�����

� Pub Nov 2002 By 
Addison-Wesley 
Professional.

� ISBN: 0201741172 



35

© 2004 Steve Berczuk

3��������
��#������


Pragmatic Version 
Control

by Andy Hunt & 
Dave Thomas

JUnit Recipies

by J. B. Rainsberger

Pragmatic Project 
Automation

by Mike Clark

© 2004 Steve Berczuk

*���� �������

� References: 
• Lean Software Development Toolkit: Mary 

Poppendick and Tom Poppendick (2003). 
Addison Wesley.

• Lean Thinking: J Womack and D. T. Jones 
(2003). New York, Free Press.



36

© 2004 Steve Berczuk

3����������


� www.scmpatterns.com
� acme.bradapp.net
� www.berczuk.com
� www.cmcrossroads.com

� steve@berczuk.com

© 2004 Steve Berczuk

4��
���
�


