
Starting Agile Adoption:
Part III — Advantages and Pitfalls
of Unit Testing

by Steve Berczuk

Automated unit testing is an essential engineering
practice for successful agile software development. A
related practice, test-driven (or test-first) development
(TDD), takes the idea of unit testing further, mandat-
ing the writing of tests before production code as a
way of ensuring good, testable design. While the bene-
fits of automated testing seem clear, teams struggle
with making the writing of unit tests routine and
effective. This Executive Update, the last in a three-part
series,1 will explain the challenges teams encounter
when adopting unit testing and provide some sugges-
tions about how to use testing to move your agile
adoption process forward.

WHAT IS UNIT TESTING?

Unit tests, written by developers, are automated and
can be described as follows:2

Fast, so that the overhead of running them frequently
is low

Independent, so that you can evaluate pieces of
functionality independently

Repeatable in any environment, ideally not depend-
ent on external resources

Self-validating, so that you can quickly determine
whether something broke

Timely, or written about the same time that the pro-
duction code undergoing testing is written (more on
this in a bit)

Unit tests could also be referred to as “developer tests.”3

Unit tests will be executed before every developer

commits and as part of the integration build. Having
unit tests, you enable some essential agile practices:

Continually shippable code. Unit tests allow you to
spot potential problems sooner, even before changes
are committed to the repository.

Refactoring. Unit tests allow you to quickly judge the
impact of a change, identifying when an attempted
refactoring changes functionality rather than structure.

Responsiveness. Since you can quickly identify the
consequences of a code for adding a new feature
change, you can feel more confident in your ability
to change functionality.

Developer-written tests supplement more traditional
exploratory testing. Unit tests are said to encourage flexi-
ble design and limited coupling, as more loosely coupled
code is easier to test in isolation. Some research4, 5 chal-
lenges the claims that TDD always provides such bene-
fits as better design, more robust testing, and better test
coverage, but writing tests first does make it less likely
that you will write code that is not testable.

Regardless of whether you want to establish a test-first
or a test-early approach, more testing earlier can have
many benefits. For the rest of this Update, early testing
means “before committing production code changes
to the repository.” In many cases, this may lead to a 
test-driven approach, but the goal is to improve test
coverage so that you catch issues earlier. Regardless of
the approach you choose, it’s important to periodically
evaluate what you are doing, its impact, and how to
improve. To realize the benefits, you need to under-
stand the costs and how to overcome some technical
and cultural challenges.

CHALLENGES

Some of the challenges to adopting unit testing include:

Testing has a cost. Like all engineering activities,
effective testing is a balance between cost, benefit,
and risk. Some tests are fragile in the face of change
and difficult to maintain. Some tests seem almost too
trivial to write. Deciding how to balance spending
effort in unit rather than integration testing can be

Agile Product & Project Management Advisory Service
Executive Update Vol. 11, No. 24



AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE2

Vol. 11, No. 24 ©2010 Cutter Consortium

tricky. Often, the benefits of reduced rework out-
weigh the cost of testing. Before evaluating the costs
of unit testing you need to follow the practice for a
time and gather data.

Legacy code is hard to test. Many teams adopting
agile methods are starting with an existing code base.
In these cases, it’s hard to start testing because of
coupling. For this reason, Michael Feathers defines
legacy code as code without unit tests.6

The role of QA changes. In some teams, testing is con-
sidered a “secondary” skill that’s best left to someone
other than developers, and writing good unit tests is a
skill that people on your team need to learn.

The technical issues that make testing difficult, com-
bined with the challenges of changing from a QA-only
test culture, can lead to a desire to defer writing tests
once problems develop, with the result that the team
never sees the benefits of unit testing. Don’t underesti-
mate the cultural impact of changing to a test-oriented
culture. Assume that testing is possible. In the next sec-
tions, I will address each of these points in detail.

The Cost of Tests

It’s important to acknowledge that writing code with
tests will take longer than writing code without them.
This is not unreasonable since a good unit test means
that the you will be less likely to find problems later with
the code under test and thus catch regressions sooner.

Unit tests take time to run; making builds (and thus
source-code changes) take longer. While unit tests need
not meet the same performance criteria as production
code, one should think through whether the test is
doing the right thing, and in the right way.

Start with the idea that tests add value. At the end
of each iteration, identify slow-running and slow-to-
implement tests and discuss what the best approach is.

Fragile Tests

In addition to the cost of implementing tests, maintain-
ing tests has a cost. When you make a change to code
and a unit test fails, there are two possibilities:

1. Your code caused a contract to be violated, and
your code needs to change.

2. You are defining new functionality, and the
test needs to change.

In the latter case, you might consider whether the cost
of maintaining the tests is too high. Ordinarily, keeping
tests up to date should not have a significant cost. 

In some cases, the cost of changing a test might exceed
the cost of the code change by a large margin. This is
typical for code that works with user interface compo-
nents. While it’s easy to write a test validating that you
have sent a flag that tells the server to enable a button
and change the color to red, it might be more difficult
to determine how to verify that the button actually
exists and has the correct color in the user interface. In
these cases, it may take significant length of time to
write an automated test to verify a quick code change.

For these cases, it is still good practice to start with the
idea of erring on the side of writing an automated test.
After an iteration or two, you can evaluate whether the
value the tests added was worth the cost.

If you find yourself with tests that take significantly
more time to keep up to date than the original code
change, consider the following:

Are you using the right testing approach or tool?
For example, if you are testing XML or HTML gen-
eration, making assertions about structure is more
robust than string comparisons against a master.

What’s the cost of an error? Will the application fail
in a significant and unexpected way, or is the result
purely cosmetic?

In the end, unit tests can, and should, add value, but
adding tests solely for the sake of increasing test count
can be counterproductive.

Trivial Tests and Testing the Trivial

When adopting unit testing, team members might go to
an extreme and test every method they write, including
trivial methods, such as getters and setters. Team mem-
bers might skip a potentially useful test because it’s too
hard to write. Or they might skip “trivial” tests because
the code under test could be verified “by inspection.”
Deciding what to test and how to test is a skill that
takes time to learn.

The Executive Update is a publication of the Agile Product & Project Management Advisory Service. ©2010 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image
scanning, and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter
Consortium publications, call +1 781 648 8700 or e-mail service@cutter.com. Print ISSN: 1946-7338 (Executive Report, Executive Summary, and
Executive Update); online/electronic ISSN: 1554-706X.



EXECUTIVE UPDATE 3

www.cutter.com Vol. 11, No. 24

Adopting unit testing, like any new skill, is about both
learning skills and adopting habits. When you first start
a project, you may not be sure what tests will provide
the most value for effort. Most programmers have spent
a significant length of time tracking down an “obvious”
problem. These experiences should provide insight into
the value of erring on the side of thorough testing.

Start by writing tests for any code that is more com-
plicated than a simple assignment. Even tests that do
seemingly “dumb” things, such as validating that a con-
figuration file has no syntax errors, can save your team
time by detecting errors during build time — before
changes were committed to the repository — rather
than after the application is deployed. When creating
the unit test seems to be taking significant effort, con-
sider whether the fault lies with the testing strategy or
the design. At the end of each iteration, review testing
practices, evaluate the benefits and costs of tests that
you are writing, and track test coverage.

While unit testing has costs, more often than not the
benefits outweigh these costs. Until you learn the bal-
ance, err on the side of encouraging tests. It’s easier to
remove tests once the team is in the habit of testing,
than it is to recover from the effects of missing tests.

Integration Testing

While it is possible that having an assembly of compo-
nents that pass all of their unit tests work perfectly
when they are first put together, this does not always
happen. Either the unit tests are not as thorough as they
could have been, or putting the system together adds
complexity that could not be tested in a unit test con-
text. Integration testing adds value, and you need to
understand the relative value of investing in unit
testing as compared to integration testing.

TDD may result in a false sense of security and therefore
cause more failures at the acceptance test level,7 as illus-
trated by a story from a time when I worked on a team
that had fully embraced TDD. While using pair pro-
gramming to fix a problem, we wrote the test and the
code. All the tests ran successfully. My colleague resis-
ted the idea of running the application, insisting that
having running tests was sufficient proof that all was
well. It turns out that our change had inadvertently dis-
abled one part of the user interface. This was something
we would have seen immediately had we launched the
application, but our testing framework could not easily
discover it. The belief that the TDD approach could
ensure quality without validating that the tests were
“good” can lead to a decrease in quality.

Unit tests are not a replacement for integration and
exploratory testing, but they can become drivers for
more unit testing. A failed integration test can point to
a component that needs more unit testing, and compo-
nents that are tricky to unit-test can point to areas to
focus more top-down testing efforts.

Legacy Code

Legacy code is often monolithic, and setting up an test
environment can have significant overhead. For this
reason, Feathers defines legacy code as code without
tests.8 When working on new code, you have the option
to use an approach such as TDD to make sure you have
testable code. Many projects that are adopting agile are
working with an existing code base, and the challenges
in writing tests for legacy code can frustrate the most
excited adopter of unit testing.

When working with legacy code, understand that the
costs of writing tests for it will be higher than for writing
tests for new code. Testing legacy code may require
starting with tests that are better suited to integration or
refactoring the code into smaller, more testable units.
While the refactoring takes time, the benefit at the end
will be more adaptable, reliable, less fragile code that
others will be more willing and able to update.

Culture Change

Engineers are quick to address technical challenges.
Cultural challenges are a more difficult barrier to
introducing change. Since introducing developer testing
will increase the (apparent) time to deliver functional-
ity, especially at the beginning, when team members are
learning new habits, you need to create an environment
where it’s safe to take the time to test. I say “apparent”
because by having developers take more time to test
and validate in an automated way, you will reduce
regressions and cycle times from initial implementation
to acceptance. By focusing on testing earlier, you may
identify requirements risks, as tests will highlight
inconsistencies or roadblocks to implementing a feature
that might not be obvious with higher-level discussions.

As developers adopt more testing, the role of QA can
expand by:

Adapting a more code-centric approach to testing
and writing more automated integration level tests

Helping with requirements specification, as discussed
in Part II

Doing more interesting exploratory testing, rather
than looking for issues easily found at the code level



AGILE PRODUCT & PROJECT MANAGEMENT ADVISORY SERVICE4

Vol. 11, No. 24 ©2010 Cutter Consortium

Even in a TDD environment, testers are needed. As
Forrest Shull et al. point out: “TDD does not replace
skillful testers but it does free them to find serious bugs
in areas related to end to end scenarios and nonfunc-
tional system characteristics.”9

GETTING STARTED

Like many change-adoption processes, it’s better to
do things than to look for reasons not to do things,
so that you can form the habit. While a TDD approach
can instill good discipline and practices, there may be
significant cultural obstacles to implementing a TDD
practice, and it may be practically impossible on teams
working with a significant legacy code base. Start with
an approach that asks developers to do the following:

Consider what each coding activity will accomplish.
This will be the basis of a test.

Before committing code, evaluate how they would
test this functionality, and if such a test would add
value relative to the effort. If the developer decides
that a test is not useful, confirm why they decided
not to. This way the default position is to test rather
than not test, as is usual.

Require that each commit to the source repository
have a test associated with it, or a clear statement of
why they decided not to test. This provides an audit
trail that can be used as data in retrospectives to help
teams improve their practices.

The important thing is to create a culture where the
quest is to decide what to test, and to err on the side of
testing, and evaluate your testing process at the end of
each iteration. As with the rest of your agile adoption
process, the iteration review and retrospective process
is essential for keeping this technique on track.10, 11

CONCLUSIONS

While it’s hard to argue against early testing, adopting
developer testing has challenges both cultural and tech-
nical. The technical challenges can be solved in a fairly
straightforward manner. To overcome the organizational
challenges, you need to provide an environment where
developers can explore testing techniques, and review
and adapt based on experience, not supposition. Manns
and Rising provide guidance on changing cultures.12

Automated developer tests can be an important tool
to help your transition to agile be more effective. But
such tests are only part of your transition to an agile

approach to development. Exploratory testing and
manual smoke testing have a role to play, too.

ENDNOTES
1Berczuk, Steve. “Starting Agile Adoption: Part I — Quality
Assurance.” Cutter Consortium Agile Product & Project
Management Executive Update, Vol. 11, No. 16, 2010; Berczuk,
Steve. “Starting Agile Adoption: Part II — Avoiding Common
Pitfalls of Planning.” Cutter Consortium Agile Product &
Project Management Executive Update, Vol. 11, No. 21, 2010.

2Martin, R.C. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall, 2008.

3Rainsberger, J.B., and S. Stirling. JUnit Recipes: Practical Methods
for Programmer Testing. Manning, 2005.

4Siniaalto, Maria, and Pekka Abrahamsson. “A Comparative
Case Study on the Impact of Test-Driven Development on
Program Design and Test Coverage.” Proceedings of the First
International Symposium on Empirical Software Engineering and
Measurement, IEEE Computer Society, 2007.

5Janzen, David, and Hossein Saiedian. “Does Test-Driven
Development Really Improve Software Design Quality?” IEEE
Software, Vol. 25, No. 2, 2008, pp. 77-84.

6Feathers, Michael C. Working Effectively With Legacy Code.
Prentice Hall Professional Technical Reference, 2004.

7Siniaalto. See 3.
8Feathers. See 5.
9Shull, Forrest et al. “What Do We Know about Test-Driven
Development?” IEEE Software, November/December 2010,
Vol. 27, No. 6, pp. 16-19.

10For guidelines about lightweight retrospective techniques, see:
Derby, Esther, and Diana Larsen. Agile Retrospectives: Making
Good Teams Great. Pragmatic Bookshelf, 2006.

11For techniques for keeping meetings focused, see: Tabaka,
Jean. Collaboration Explained: Facilitation Skills for Software
Project Leaders. Addison-Wesley, 2006.

12Manns, Mary Lynn, and Linda Rising. Fearless Change: Patterns
for Introducing New Ideas. Boston, Addison-Wesley, 2005.

ABOUT THE AUTHOR

Steve Berczuk is an engineer and ScrumMaster at Humedica,
where he’s helping to build next-generation clinical informatics
applications based on software as a service (SaaS). The author
of Software Configuration Management Patterns: Effective Team-
work, Practical Integration, he is a recognized expert in software
configuration management and agile software development.
Mr. Berczuk is passionate about helping teams work effectively
to produce quality software. He has a master’s degree in opera-
tions research from Stanford University, a bachelor’s degree in
electrical engineering from MIT, and is a Certified Practicing
ScrumMaster. He can be reached at steve@berczuk.com.


