
4
tweets

retweet

Agile Teams Care About Dev Ops
WRITTEN BY STEVE BERCZUK

While itʼs good that the idea of considering production issues early now has a name (Dev
Ops), what matters in the end is delivering software more reliably, reducing waste in the
product delivery process, and making stakeholders happy. Since productʼs donʼt deliver value
until they are deployed and working itʼs good to take a step back and consider operations and
deployment processes and team as first class stakeholders earlier.

Practice
Agile methods address the issues of complexity in technology and requirements by
acknowledging that itʼs hard to design products and processes up front, and it is better to

iterate in small steps and adjust based on your results. While much discussion of agile methods focuses on the development
process, this approach also applies to deployment and infrastructure. To iterate effectively, you need to have repeatable processes
that you can evaluate periodically and improve as you discover flaws. Software configuration management techniques are thus
natural enablers of agile software development. Repeatable development processes can happen at many levels.

Repeatable workspaces and builds help developers collaborate effectively on a code level and give you practice building and running
the application in a variety of environments. By having a private system build that allows anyone to build, configure and run product
teams can quickly identify configuration and environment aspects that vary, and make the build and configuration mechanisms more
robust. [Berczuk]. Continuous integration practices give you the ability to develop reliable integration testing practices, in addition to
simply ensuring that the build works in a “canonical” environment. [Duvall]. The next logical step to improve product quality is to get
more practice with your deployment practices and consider continuous deployment [Humble].

While automating and practicing your deployment practices will address some of the issues you might have with deployment quality,
just executing the practice that developers implement is not enough, you want your system to have a deployment process that serves
the needs of the key stakeholders in that process: the operations team. To enable this, you can benefit from considering what makes
agile software development effective.

The Agile Difference
Agile software development methods seek to break down walls between the various parts of the traditional product development
process. Rather than having distinct requirements, development, and testing phases for a project, agile teams divide the
development process into iterations where the whole team works together as one. Agile methods do this by introducing project
management and technical practices that allow for frequent, rapid feedback on the quality of the code and the requirements so that
teams understand the state of the project all the time based on the artifact that matters most: working code.

The technical practices that are most obvious in an agile team are developer testing, continuous integration, and automation. Testing
is no longer a hands-off process, reserved for a QA team. And by building the software (and running automated tests) after every
commit you work to ensure that your code always build and works. In an ideal world, you can release your product at any point.

While continuous integration is a necessary precondition for software to deploy, it is not sufficient for deployment into a production
environment if your deployment mechanisms, these mechanisms are development centric. To be successful at creating reliable
deployment processes you need to extend your agile stakeholder model to include the operations team and their concerns.

On to Dev ops
Dev ops is an extension of agile[Cowham]. Most software developers have heard of continuous integration and unit testing (even if
they do not use it). Most teams understand the value of versioning all source artifacts in a repository[Berczuk] and having easy to
reproduce builds.

The next logical step is to routinize deployments into production. For this to happen the project team needs to incorporate operation
issues into the backlog early, and incorporate operations team roles into the core development team.

Some concrete steps that teams can take to move towards a dev ops perspective are:

http://tweetmeme.com/story/4052994731/
JavaScript:%20popup();
http://www.cmcrossroads.com/cm-articles/275-articles/13919-agile-teams-care-about-dev-ops#
http://www.cmcrossroads.com/community/my-profile/10115-berczuk

Including the operations team in the project team. Some tasks might lend themselves to implementation by someone familiar
with the operations systems.
Extend your toolset to include tools that the operations team can easily use. Your may be developing a web application in
Java, but some deployment and configuration tasks might be easier to execute in, say, Bash of Python.
Developing tools and process to do deployments into production early. These tools should be in a form that works well in an
operation environment, and be as automated as possible.
Making realistic deployment environments available to the team so that production deployments can be exercised early, and
automated.
Place system artifacts under the same change management paradigm that you use for code. The tools may be different, but
the you should strive to deploy not only an identical version of the code, but an identical version of the code in an identical
server configuration.
Each of these steps seems simple, but there are technical and organizational challenges to making them work reliably. In
most cases the payoff will be worth the effort.

Why Dev Ops Matters
Teams are starting to realize that the development processes of agile, while essential to successful incremental deployments, are not
enough for delivering value reliably. Operations is an essential part of the product value chain. Much as teams are willing to invest in
build infrastructure such as maven repository management tools, teams are slowly discovering the value of considering tools for
managing and automating deployments to production environments. Whether you call it Dev Ops, or a Larger Team Approach,
Collaboration, or simply Doing the Right Thing, incorporating operations concerns earlier in the process will help you identify
potentially critical issues earlier and address them with minimal cost.

References

[Berczuk]Berczuk, S. P. and B. Appleton (2003). Software configuration management patterns : effective teamwork, practical
integration. Boston, Addison-Wesley.

[Duvall] Duvall, P. M., S. Matyas, et al. (2007). Continuous integration : improving software quality and reducing risk. Upper Saddle
River, NJ, Addison-Wesley.

[Humble] Humble, J. and D. Farley (2010). Continuous delivery : reliable software releases through build, test, and deployment
automation. Upper Saddle River, NJ, Addison-Wesley.

[Cowham] Cowham, Robert, (2010-October) Agility Throughout the LifeCycle – the Rise of DevOps
http://www.cmcrossroads.com/component/content/13763

Steve Berczuk is a consultant and developer who works with Agile teams. He has over 20 years experience developing
application, often as part of geographically distributed teams. In addition to developing software he helps teams use Software
Configuration Management effectively in their development process. Steve is co-author of the book Software Configuration
Management Patterns: Effective Teamwork, Practical Integration and a Certified ScrumMaster. He has an M.S. in Operations
Research from Stanford University and an S.B. in Electrical Engineering from MIT. You can contact him at steve@berczuk.com

About the Author

mailto:steve@berczuk.com

