
7/11/11 6:53 PMBranching to Distraction

Page 1 of 6http://agile.techwell.com/print/111131

Published on Agile (http://agile.techwell.com)

Home > Branching to Distraction

Branching to Distraction

Branching to Distraction
| Comments: (0) | Sun, Jul 10, 2011
Summary:

Branching can be an effective solution for managing change, enabling parallel development and
improved productivity. But, working on a branch is a distraction and can decrease agility,
productivity, and code robustness. This article will help you to understand when the value of
working on a branch outweighs the cost.

Weekly Columns

Branching can be an effective solution for managing change, enabling parallel development and
improved productivity. But, working on a branch is a distraction and can decrease agility,
productivity, and code robustness. This article will help you to understand when the value of
working on a branch outweighs the cost.

Branching [1] is a source code management technique for enabling parallel development. When
you branch, you create a code line that is essentially a copy of its parent. By keeping track of the
ancestry of the new code line, you can identify what has changed since the branch point and
apply changes from the branch to the parent code line and vice versa. A branch allows you to
work on a variation of the code without immediately affecting—or being affected by—changes on
the main code line. (Streamed Lines [2] has a detailed description of other reasons for branching.)

Figure 1 illustrates some branching patterns. Assume that you are working on a main line, and
you are scheduled to release version 1 in a week. At some point, you might decide that there are
people on your team who can start working on a new feature for version 2 while the rest of the
team finishes version 1. You can create a task branch, where a group of developers can work on
the new code without interfering with the soon-to-be-released version 1. Once version 1 is ready
to ship, you can create a release branch to deliver fixes for released software. In theory, the
changes required to deliver the fix from a release branch will be smaller and more easily tested
than if you were to attempt to deliver from the main development line. The team can address the
problem to be fixed by committing changes to the branch without interfering with the work of the
rest of team. You can then merge the task branch changes back into the main line so that

http://agile.techwell.com/
http://agile.techwell.com/
http://www.stickyminds.com/s.asp?F=S16454_COL_2
http://www.cmcrossroads.com/bradapp/acme/branching/

7/11/11 6:53 PMBranching to Distraction

Page 2 of 6http://agile.techwell.com/print/111131

everyone is working on one code stream again.

Without branching, it would be tricky for the team to work on two tasks at once. And, there are
times when working on a branch can help you be more agile by enabling you to work around
roadblocks and keep moving while other work is being completed. A branch allows you to get
work done when your code and your processes make it difficult to make the related changes on
the main code line.

Figure 1: Common Branching Patterns

Branching makes it easy to defer concerns about the impact of a change on the main code line
and to focus on the code variant you are working on. By working on a branch to deliver a fix, for
example, you address the following concerns:

The perception that itʼs too costly to QA the new code line before delivery and that making
a small change to “stable” code will be easier to validate.
The desire to limit the visibility of new (incomplete) features, since new work is being done
on the main line.

Another example is using staged integration branches, where a change does not appear in the
main line until it has passed through a variety of merges. In this case, you are using branching to
make it less likely that someone will check out broken code from the main line.

While these approaches have merit on the surface, you also must think about the basic problem
that you are solving and consider the costs of working on a branch.

The Distractions of Branching

When working on a branch, you are splitting your attention between multiple streams of work.
There is a context switch to working on the “old” code from the branch, and often the changes
you make on a branch (or equivalent functionality) need to be merged to the main code line.

7/11/11 6:53 PMBranching to Distraction

Page 3 of 6http://agile.techwell.com/print/111131

Doing this merge creates extra work over what you might do if you are able to simply change the
main code line.

A branch can be a useful tool in some situations, allowing your team to respond to issues with
agility even when your main code line is not agile enough to allow the change. A branch can help
you be more agile by allowing you to focus on a task, or it can impair agility by causing a split in
attention.

The paradox of branching is that while branching is meant to help you to focus, a branch can be
a source of distraction to the team for reasons ranging from context shifting to confusion about
where a change was made. To using branching effectively, you need to acknowledge the
potential distractions a branch can cause and determine whether the net effect of creating a
branch is more focus for the team. If it is not, you should find a different approach to address the
problem.

Example: The Release Line

Consider the situation where a customer reports an issue in the code between the time it was
initially released and when the next release is scheduled to ship. Working on a release line
branch can be an appealing solution, because branches provide isolation and a perception of
simplicity and safety, since you are starting out with code you believe to be tested and release
quality.

The belief that you are starting out with more stable code does not remove all of the perceived
added cost over delivering the code on the main line for the following reasons:

Working on a branch creates extra work.
Working on a released code line usually does not save as much effort as you might have
thought.

Regardless of the nature of the fix, you are splitting your attention from the current project work.
You may be fixing a problem that has already been addressed on the active development line,
and you are constrained to using versions of frameworks and tools that the released code was
delivered with, even though using the newer versions would make work easier. Developers have
to deal with the frustration and cognitive costs of working with a code base that is different than
what they work with daily.

In many cases, you may want to migrate the work you did on the branch to the main
development line by merging the code changes. The complexity of a merge can range from
simple to impossible. Simple changes involving small text changes when the main line has
changed little can be done quickly and easily. In other cases, merging a complex change to a
heavily changed main line may not be possible without significant manual intervention (though
there is some research about tools that support refactoring [3]).

Since software systems are complex, all but the most trivial changes will require that you
extensively test the software before you ship it. You might overestimate how much delivering
from a branch saves you, but having good automated test coverage can make this easier. Good
automated test coverage can also reduce the need to branch, as discussed below.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4509441

7/11/11 6:53 PMBranching to Distraction

Page 4 of 6http://agile.techwell.com/print/111131

Creating a branch will add some infrastructure work (creating a new continuous build, for
example). Working on a branch also delays integration with the main code line.
When you are working on a change that you will need to migrate to the main line, you have two
choices:

Integrate frequently between the branch and the main line as the work is being done.
Wait until the work is done on the branch and attempt to integrate later.

Frequent integration has the advantage of identifying integration issues quickly, but the
disadvantage of requiring the person doing the merge to shift context frequently. Merging after
work is done simplifies the context-switching overhead, but a rapid rate of change on the main
line can complicate the merge task.

This problem becomes more complex the longer the time between the branch point and the fix.
And, regardless of which approach you choose, youʼve added complexity and risk to even the
smallest change to the branch. If changes to a branch do not need to be merged, branching will
be simpler, but there is still a context switch and effort being diverted from the next project.

Using branching to provide stability and isolation is based in a development model that assumes
fragile and inflexible code, and it is possible that your code is not as stable or flexible as youʼd
like it to be. In this case, branching can be a way to enable you to keep your code working until
you can make it agile. As you establish development practices that help your code be more agile,
you can use branches in a way that has less impact on your ability to deliver code.

Paradigm Shift: Enabling Less Branching

Avoiding the distractions of branching requires changing your approach to development.
Branching can protect you in the short term when you have unstable code lines and long release
cycles with little change between releases. But, as your team adopts more agile practices and is
able to deliver reliable code more quickly, the release branch pattern becomes less and less
necessary.

To make less branching possible, you need to work towards:

More frequent releases—the shorter the time between releases, the more likely you can
deliver a fix from the existing code line. And, in the rare case that you need to deliver a fix
between releases, you can have shorter-lived branches.
Automated testing—so that you can keep your code lines stable and reduce the cost of
delivering from the main line (or a short-lived branch).
Continuous integration—so that you detect problems quickly.
A DevOps mindset—where you develop deployment and operations procedures early so
that you can release as soon as the code is “ready.”

There may well be times when working on a branch makes sense, especially as you are
transitioning to practices to make your team more agile. Try to understand the costs of
branching and whether working on branches distracts you from your business objectives. Shifting
your development process will involve both technical and organizational change.

7/11/11 6:53 PMBranching to Distraction

Page 5 of 6http://agile.techwell.com/print/111131

Branching as a Gateway to Agility

Even though branching has downsides when you have processes in place to enable frequent
delivery, there are situations where branching can provide you the space you need to develop
agile practices.

Keeping a legacy release on a branch while you refactor the main line to be more testable allows
you to focus effort on making code better while at the same time minimizing the cost of changes
to the delivered code. The costs of working on the branch could be more than made up by the
reduced support costs for future releases.

Some of these changes are organizational, and organizational change can be difficult and slow.
If you want to move towards a more agile code line at a team level, there are some steps that
you can take:

Branch only when, on net, the branch minimizes distraction and effort rather than increases
it. Use the cost analysis to make a case for the organizational changes you need to
establish a more frequent release model.
Consider the need to branch as an indication that your code may not be as agile as you
need it to be.
Remember that tools that make the mechanics of branching easy can be helpful, but
understand the reason (and cost) before deciding to branch.
Weigh the cost of a more frequent delivery against the cost of maintaining multiple
branches, and donʼt assume that a branch is less costly.
When you do branch, keep branches short lived and integrate changes between branches
frequently.
Increase your automated test coverage so that you can improve your confidence in your
ability to deliver code from the main line.
Consider applying the patterns in Software Configuration Management Patterns [4] that
discusses how to develop using a minimalist branching model.

When to Branch

Branching is both a distraction and a way to limit distractions. Identifying the difference is tricky.
In most cases, you are better off avoiding branching except when the branch is truly a divergent,
parallel effort—for example, support for a legacy release that you will not migrate to the main
development line. A more practical reason for a branch is when your code base is such that
regression testing is risky. Here are some guidelines to minimize the cost of branching when you
need to branch:

Create release branches for delivering fixes, but work to minimize the time between
releases. Focus on merging functionality (and tests) rather than code back to the main line.
If you have a business need to support prior releases for a period of time (and customers
who wonʼt upgrade) using release branches is unavoidable from a technical perspective,
but be sure that the business costs are clear to those negotiating contracts.
Use task branches only for truly exploratory work that might be abandoned, or for the initial
phases of an exploration. Try to make task branches short lived.
When considering branching, be sure that you understand why you are branching. In the

http://www.stickyminds.com/books.asp?ObjectId=541&Function=DETAILBROWSE&ObjectType=BOOK

7/11/11 6:53 PMBranching to Distraction

Page 6 of 6http://agile.techwell.com/print/111131

cases of released code, consider tagging the release point and branching only when you
need to deliver a fix.
When you do create a branch, make sure that you have tooling to make creating a branch
workspace easy and quick.

Branching can be a powerful and useful tool when used appropriately. Remember that working
on a branch means that you are deferring integration and pushing risk downstream, not avoiding
it. Donʼt branch thoughtlessly. Instead, be sure to understand the cost of branching vs. the
benefits, and your code and organization can become more agile more quickly.

Slideshow Image:
Branching_to_Distraction.png [5]

SQEORIG [6] Agile Methods [7] Development & Deployment [8] Test & Evaluation [9]

Process Improvement [10]

SQEORIG Agile Methods Development & Deployment Test & Evaluation Process
Improvement

Footer

Advertise
RSS
Site Feedback
Subscription Services

Source URL: http://agile.techwell.com/articles/weekly/branching-distraction

Links:
[1] http://www.stickyminds.com/s.asp?F=S16454_COL_2
[2] http://www.cmcrossroads.com/bradapp/acme/branching/
[3] http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4509441
[4] http://www.stickyminds.com/books.asp?ObjectId=541&Function=DETAILBROWSE&ObjectType=BOOK
[5] http://agile.techwell.com/sites/default/files/articles/images/Branching_to_Distraction.png
[6] http://agile.techwell.com/category/source/sqeorig
[7] http://agile.techwell.com/category/topics/process-improvement/agile-methods
[8] http://agile.techwell.com/category/topics/development-deployment
[9] http://agile.techwell.com/category/topics/test-evaluation
[10] http://agile.techwell.com/category/topics/process-improvement

http://agile.techwell.com/sites/default/files/articles/images/Branching_to_Distraction.png
http://agile.techwell.com/category/source/sqeorig
http://agile.techwell.com/category/topics/process-improvement/agile-methods
http://agile.techwell.com/category/topics/development-deployment
http://agile.techwell.com/category/topics/test-evaluation
http://agile.techwell.com/category/topics/process-improvement
http://agile.techwell.com/category/source/sqeorig
http://agile.techwell.com/category/topics/process-improvement/agile-methods
http://agile.techwell.com/category/topics/development-deployment
http://agile.techwell.com/category/topics/test-evaluation
http://agile.techwell.com/category/topics/process-improvement
http://www.techwell.com/
http://techwell.com/advertise
http://agile.techwell.com/rss.xml
http://agile.techwell.com/contact/
http://agile.techwell.com/better-software-magazine-subscription-services
http://agile.techwell.com/articles/weekly/branching-distraction

