
From Agile Requirements
to Agile Code
by Steve Berczuk

Being agile means managing a project in an iterative
fashion with incremental delivery. Iterative and incre-
mental delivery requires a change in your approach
to planning, to execution, and to basic cultural assump-
tions about software delivery. Changes to planning
and execution are necessary for an agile approach to
work. This Executive Update discusses how planning
and execution interact to change assumptions about
software delivery and also points out some approaches
in engineering practices that will increase the likelihood
of agile success.

AGILE BASICS

The agile software development model is simple in
concept but challenging to execute. Agile methods
acknowledge uncertainty and manage that uncertainty
using working software as the measure of progress. By
using techniques that rely on transparency, inspection,
and adaptation, teams can deliver business value while
also adjusting goals in response to changes in current
needs or future technical or market forces.1 Some agile
methods, such as XP, focus on technical practices, while
others, such as Scrum, focus on project management.
To iteratively plan, deliver, review, and then adjust plans
based on experience requires changes on both the plan-
ning and technical sides, and change is always difficult.

Good planning makes it easier to execute in an agile way.
But agile plans can only be effective if the team follows
engineering practices that provide the feedback needed to
inspect and evaluate as well as those that produce a code
base that allows you to adapt. If you are open to an itera-
tive approach to agile adoption, you can make small steps
that will help product management and development
teams work together better.

AGILE PLANNING

Before diving more deeply into the interactions between
planning and execution, it’s important to clarify that
agile planning means “enough” planning to move
forward and measure progress.2 You need to strike
a balance between (1) vague and imprecise require-
ments that are difficult to implement and track and (2)
elaborate use-case analyses for features that don’t need
them. By defining things with just enough detail, you
can get feedback based on seeing software in action.

Agile requirements are focused on delivering function-
ality to users and start with three things: a user (who
has a business need), a feature (what the system will
do), and a goal (the reason the user wants to do the
task).3 While many teams can develop lists of features,
the user and end goal parts of the story are often miss-
ing, but they are the most difficult and most important
parts to express. Having a clear statement of product
goals allows you to decide what implementation will
satisfy the core need and to evaluate whether the story
is even necessary to implement. Since implementing
features that do not have a clear use is wasteful, remov-
ing items from the backlog can be a major efficiency
gain for a team. Try to develop user stories with
incremental delivery in mind.

Iterative and Incremental Planning Challenges

To deliver increments of software functional in
iteration, product owners need to think in terms of
incremental features and their priority. Incremental
features are features that are well defined, move the
product forward, and can be developed in an iteration.
Because they are small, incremental features may not be
as rich as a traditional requirement, but their develop-
ment provides insight into implementation risks and
requirements risks, allowing product owners to make
adjustments to meet a delivery goal. Defining incremen-
tal features for an agile project is difficult because it
requires a great deal of precision: you need to define
the goal with enough detail so that you can evaluate
its completeness.

Incremental requirements require a cultural shift
toward making decisions in the face of uncertainty.

Agile Product & Project Management
Executive Update Vol. 13, No. 5

AGILE PRODUCT & PROJECT MANAGEMENT2

Vol. 13, No. 5 ©2012 Cutter Consortium

Agile methods work best if the team is aiming in one
direction then changes direction based on feedback,
rather than working off of imprecise goals. If a require-
ment isn’t well understood, the exercise of defining a
(simple) execution will be useful. For an agile project
to be successful, you need to be able to set expectations
about what a team will deliver in order to see how well
goals are met. Deciding if a team completed a story may
always have a subjective element, but try to define what
“done” means if you want to be able to measure and
track progress reliably.

Without a good understanding of a “complete story,”
the team cannot estimate accurately and thus cannot
set expectations. Not being able to set expectations can
cause trust between the team and the product owner to
break down. Without trust, it’s harder for management
to accept the idea of self-organizing teams, which loses
the efficiency benefits that self-organization provides.

Prioritization is also a challenge. First, product owners
are sometimes reluctant to assign priorities out of
a sense that only “critical” issues will get attention.
This indicates a lack of trust in the team to deliver on
commitments and its ablility to change direction. Also,
assigning a “1 … n” priority to an entire list can be lots
of work, but working off a list of Priority 1 issues is in
effect working off of an unprioritized list. The goal of
agile is to help organizations deliver the most important
business value and not waste effort delivering features
that will not be used.

Agile Execution Challenges

The engineering teams need to make changes to sup-
port agile planning. Traditional teams sometimes try
to manage risk by doing lots of design up front and
avoid writing code that may need to be changed later.
In most projects, agile or not, needs and code do
change. While design and good coding practices are
important on all projects, an agile developer needs
to write code that can adapt to the challenges of
incremental and iterative delivery.

AGILE CODE

Much like agile requirements aim toward a goal, agile
engineering practices help teams write code that meets

the goals of an iteration and changes direction easily.
To be an agile team, you need agile code. The agility of
a code base is related to the architecture, development
practices, and the delivery model. As working software
is the main way of evaluating progress on an agile proj-
ect, agile engineering practices can drive agile planning
techniques when they are lacking.

Agile code is code that you can change while still being
able to deliver working software on a regular basis.
What makes code agile is a combination of good design
and the application of practices that provide constant
feedback on the state of the code so problems can be
detected as soon as they occur. These practices include:

Automated unit and integration tests, in combination
with continuous integration, to provide immediate
feedback on the effects of a change to the code

Refactoring and continually improving the structure
of code while maintaining functionality

Frequent deployments to a production-like environ-
ment to identify issues early and to make the appli-
cation visible to stakeholders

By maintaining code in a working state, it is possible
for the team to quickly implement changes to a prod-
uct backlog that a product owner might request. Since
the goal of an agile project is to deliver business value,
remember that technical practices are a means to an end,
and items such as refactoring, design, and testing should
not appear directly on the product backlog. Rather, con-
sider how these tasks further the progress of the project.
Maintaining clean agile code does have more up-front
costs than not doing so, but it’s important to allow for
the effort to do so, since delivering code that can sustain
change is essential to agile success.

AGILE ARCHITECTURE

Working software and demonstrable features are
the measures of progress on an agile project. Given
a narrowly focused user story, agile teams focus on
developing software in vertical slices through the
architecture by feature rather than in traditional
architectural layers (i.e., UI, application, database).
Developing end-to-end features — rather than focusing
on the data model, the UI, or application tier — has its

The Executive Update is a publication of Cutter’s Agile Product & Project Management practice. ©2012 by Cutter Consortium. All rights reserved.
Unauthorized reproduction in any form, including photocopying, downloading electronic copies, posting on the Internet, image scanning,
and faxing is against the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium
publications, call +1 781 648 8700 or email service@cutter.com. Print ISSN: 1946-7338 (Executive Report, Executive Summary, and Executive Update);
online/electronic ISSN: 1554-706X.

EXECUTIVE UPDATE 3

www.cutter.com Vol. 13, No. 5

advantages. Users can see the application do something.
A data model, while important, is not easy to demon-
strate, and a UI backed only by scaffolding does not
help identify implementation challenges early. With
an end-to-end approach, the team and product owners
can understand what features are truly necessary and
gain a better sense of what to defer if something is late.

Early feedback on architecture is especially valuable
for managing risk. The team can validate the interac-
tions between layers and make changes to simplify
work at other layers easier, thus minimizing unneces-
sary rework. UI implementation can be influenced
by decisions made at the data layer and vice-versa.

Developing in vertical slices does not eliminate the
need for architecture and design, but it does call for
a more lightweight architecture that you can evaluate
as you go. Authors Jim Coplien and Gertrud Bjørnvig
say much more on this subject in their book Lean
Architecture: for Agile Software Development.4

The Agile Team

To be able to implement in vertical slices and be efficient,
agile teams are often composed of generalizing special-
ists. Generalizing specialists can work on multiple
aspects of the system, though they have expertise in a
particular area.5 This means that all work that touches
the UI is not blocked if your UI developer is overly busy.
It also allows a first-pass, end-to-end implementation by
a single developer. As a generalizing specialist, you are
not abandoning the idea that there are no “experts”;
you are encouraging team members to learn about and
work with other aspects of the code. Having such a
cross-functional team not only reduces bottlenecks in
the development process, but also improves code quality
by increasing the number of people who work with, and
thus implicitly review, code.

Delivery and Deployment

Working software is the measure of progress in an agile
project. But working means more than just “can demo”
or “compiles and passes automated tests.” Software
isn’t useful, and stakeholders cannot provide useful
feedback on it until it can run on the target environ-
ment. Make your application available on a target sys-
tem early, and verify the deployment and installation

process often. This gives you an opportunity to identify
decisions, which will simplify the deployment and
configuration process early, as there are differences
between a development system and a production-like
one that you need to address to be “done.”

CONCLUSION

To be successful at agile, consider the entire product
lifecycle, from planning to execution, and be aware
of the challenges that the difference in approaches will
present to teams coming from a different background.
Agile engineering practices may encounter less resist-
ance than the planning practices, and, as long as your
organization wants to be more agile, working on the
technical practices can help identify other bottlenecks
to agile.

ENDNOTES
1“The Scrum Guide: The Official Rulebook.” Scrum.org, 2011
(http://www.scrum.org/scrumguides).

2Berczuck, Steve. “Starting Agile Adoption: Part II — Avoiding
Common Pitfalls of Planning.” Cutter Consortium Agile
Product & Project Management Executive Update, Vol. 11,
No. 21, 2010.

3Cohn, Mike. User Stories Applied: for Agile Software Development.
Addison-Wesley Professional, 2004.

4Coplien, James O., and Gertrud Bjørnvig. Lean Architecture:
for Agile Software Development. Wiley, 2010.

5Berczuck, Steve. “Generalists, Specialists, and Generalizing
Specialists.” Cutter Consortium Agile Product & Project
Management Executive Update, Vol. 12, No. 16, 2011.

ABOUT THE AUTHOR

Steve Berczuk is an engineer and ScrumMaster at Humedica,
where he’s helping to build next-generation clinical informatics
applications based on SaaS. The author of Software Configuration
Management Patterns: Effective Teamwork, Practical Integration, he
is a recognized expert in software configuration management
and agile software development. Mr. Berczuk is passionate
about helping teams work effectively to produce quality soft-
ware. He has a master’s degree in operations research from
Stanford University, a bachelor’s degree in electrical engineer-
ing from MIT, and is a Certified Practicing ScrumMaster. He
can be reached at steve@berczuk.com.

