Teamwork and Configuration Management: Some Patterns?

Steve Berczuk
berczuk@acm.org

Coordination and communication are two important parts of a successful
development process. Social and organizational constraints have an effect
on the development process. By thinking of software configuration
management(SCM) in the context of how the SCM process helps team
members work together we can apply SCM more effectively. These issues
are important regardless of language used, but these patterns come out of
my experience is in doing C++ development. This paper presents three
configuration management patterns and shows how they relate to
organizational patterns.

Introduction

Software development involves socid process aswell as atechnical issues. Asteams get
larger, communication becomes harder2. To address these issues developers use processes
and toolsto help the team share a common vision of thesystem it is developing. Designing
with team communication issues in mind can make the system easier to build[2] [3].
Considering these interactions in the implementation of the development process can also
be useful, particularly when using a language such as C++, where it is easy to have many
compile time dependencies between modules different people are deve oping.

Much of my development experience has been working with teams of people who work in
different locations. In these cases effective configuration management was essentid for
cooperative development. Even when your project involves people in the same location
though, it is easy to have ineffective configuration management cause problems which
generate extrawork.

Following patterns such asthese can smplify the development of a number of systemsin
C++ where the common code base was changing rapidly, and we needed to stay in
synchronization, while at the same time protecting each devel oper from changes occuring
out from under them. Projects | have worked on which had these issuesinclude a satdl lite
telemetry processing system, an document imaging system, and an scheduling system. At
some level though, any project being done with a demanding set of customers and a tight
schedule will have similar issues.

Successful development organizations exhibit certain patterns which address the
coordination and communication issues. Coplien catalogs some of the stepsin the

1 Thisisa pre-copyedit version of the paper that appeared in the July/Aug 97 C++ Report (Vol 9 #7 pp28
ff).

2 Onerule of thumb isthat “communication overhead becomes serious as there are too many people on the
project to fit at one lunch table at the same time.”[1]

June 18, 2001 1 Teamwork & CM Patterns

procesg[4], Cunningham[5] describes patterns which comprise the Deve opment Episodes
which occur in a software development organization, and Cockburn[6] describes patterns
around how social issues affect the process. Software configuration management (SCM)
can be used to help realize these patterns.

Software Configuration Management

There are many aspects of configuration management; this paper discusses some basic
SCM patterns and how they can be used to implement the broader organizationd patterns
relating to coordination among deve opers. Grinter[7] describes someof the coordination
challenges of software development processin detail.

A standard definition of software configuration management includes the following
aspects®:

» Configuration Identification, which includes determining which body of source code
you are working with. This makesit possible to know, among other things, that you
are fixing a bug in the source code which isin the correct release.

» Configuration Control, controlling the release of a product and changesto it
throughout thelifecycle to ensure consistent(re) creetion of a baseline software
product. This can include not only changes to source files, but also which compiler and
other tools were used so issues such as differences between compiler support for
language features can be taken into account.

» Status Accounting Audit, recording and reporting the status of components and
change requests, and gathering vita statistics about componentsin the product. One
guestion we may want to answer is:, "How manyfiles were affected by fixing thisone
bug?'and

* Review. validating the completeness of a product and maintaning consistency among
the components by ensuring that components arein an appropriate state throughout
the entire projectlife cycle and that the product isa well -defined collection
ofcomponents.

It can dso be said to include?

* Build Management, ie, managing what processes and tools developers useto create a
release, so it can be repeated.

* Process Management,ensuring that the organization’ s development processes are
followed by those developing and releasing the software

» Team Work, controlling the interactions of al the developers working together on a
product so that people’ s changes get inserted into the system in atimely fashion.

3 Thanks to Brad Appleton for summarizing these points quite succinctly.

4 Private Communication with Brad Appleton.

June 18, 2001 2 Teamwork & CM Patterns

Of these elements, the latter 3 play the largest role in the day to day workings of the
development process, since they affect what a developer does day to day.

| deally a configuration management process should serve both broad organizational
interests as well as making the work of a C++ developer easier. A good SCM process
makes it possible for devel opers to work together on a project effectively, both as
individuals and as members of ateam. While there are various tools that can make the
process smpler, tools done are not enough; The re areal so certain patterns for software
configuration management® that exist in successful development organizations. 6

With respect to team interactions, a successful configuration management process alows:

» Developersto work together on a project, sharing common code, for example
adeveloper of aDerived class needs to stay in synch with whoever is
developing a base class, and a client of a class needsto be able to work with
the current verson of that class.

» Developersto share development effort on a module, such aclass or smply a
single source file. This can be by design or to allow someoneto fix abugin
“another person’s’ module if the other person in unavailable.

» Developersto have access to the current stable (tested) version of asystem, so
you can check if your code will work when someone ese tries tointegrateit
into the current code set.

» Theability toback up to aprevious stable version (one of anumber of Named
Sable Bases [4]), of asystem. Thisisimportant to alow a deve oper to test
their code against the prior consistent versions of thesystem to track down
problems.

* Theability of adeveoper to checkpoint changes to amodule and to back off
to aprevious version of that module. Thisfacility makesit safer to experiment
with amagjor change to amodule that is basically working.

Attaining all of these goals involves compromises (many people working of one body of
code makes maintaining consistency difficult, for example). This paper presents 3 patterns
that illustrate how configuration management can help us realize larger organizationd
patterns.

The patterns are illustrated with an example which has the following components:

* A number of Developer Workspaces, each representing the environment of a specific
developer in the organization.

» The Project Repository, which isthe common set of fileswhich are usedin a
development project, for example, the Version Control system.

SThese patterns focus on source code configuration management. A complete SCM system should also
take testing, tools, and other e ements of the software processinto account.

6A detailed discussion of Configuration Management can be found in [8] among other sources.

June 18, 2001 3 Teamwork & CM Patterns

Configuration management is best implemented with tools that simplify and/or enforce
policies, so reference is made to toolsin the examples. The patterns areindependent of the
tools used.

An Overview of the Patterns

This section summarizes’ the intents and solutions of the patterns describe here and those
we reference.

Configuration Management Patterns Presented Here

* Private Versioning: Allow a developer to checkpoint changes for convenience and
security without violating organizational standards regarding granularity of
revisions.

* Incremental Integration: Provide ameansfor a developer to “pre-test” interfaces
before an integration build.

* Independent Workspace: Make sure that new builds do not interfere with a
developer’swork in progress

Figure 1 shows how these Patternsrelate to other organization patterns, with these
patterns represented by shadowed boxes. These patterns are presented in Alexandrian
[9] form which isaloosely structured form in which the following elements of a
pattern® are presented:

* The Context: What are the issues with which we are working.

* TheProblem: The specific issue we want to address, including the forceswe
may want to resolve.

* The Solution: How to resolve the problem in our specific situation.
Associated Patterns

Since these patterns connect to other patterns, this section briefly describes the patterns.
In addition to the printed sources cited, these patterns are aso described at the
Organization patternsweb site (ht t p: / / www. bel | -1 abs. cont cgi -

user/ OrgPatterns/ OrgPatterns).

Patterns from A Generative Development Process Pattern Language [4] (Shown in figure
1 with asolid line).

» Code Ownership: assign asingle developer responsbility for amodule.

7 These patterns provide more information than can be summarized in one sentence, so these summaries
leave out many details, and provided here are only for convenience. In particular the context in which the
pattern appliesisan essential part of the pattern. Please consult the original sourcesfor thisdetail.

8 For ageneral introduction to pattern concepts see http://www.enteract.com/~bradapp/docs/patterns-
intro.html and [10].

June 18, 2001 4 Teamwork & CM Patterns

* Named Stable Bases, provides guidance for how often to integrate, specifying that the
integrated versions are available as working “releases’ for other developers.

Patterns from Episodes [5] (Shown in figure 1 with rounded corner boxes).
* Programming Episode: divide a program into discrete episodeswith deliverables.
* Work Integration: Assemble recent work products.

* Developmental Build: build the system, and do regression tests (to permit Named
Stable Bases)

Patterns from The Interaction of Social 1ssues and Software Architecture [6] show in
figure 1 with abold solid line).

* Owner Per Deliverable: Make sure that each deliverable entity has a person
responsible so that the ddiverable does not get overl ooked.

June 18, 2001 5 Teamwork & CM Patterns

Code Ow nership Named Stable
Bases

(Work Integration)

Programming

Ow ner Per [Episode]
Deliverable

| Private Versioning I
Incremental

Integration

Independent
(Developmental Build) Workspaces

Figure 1: Relationships Between the Patterns

The Patterns

Private Versioning®

A developer should have away to checkpoint changes without making these changes
available to the development team at large. We want to implement Code Ownership(17)
[4] but subsystems never work entirely in isolation.

Periodic integration of a developer'swork with that of other membersof the
development team isimportant for ensuring stability. Checkpointing only after
completing major changes can make it difficult to back off of one phase ofa change. Usng
the revision control areafor this can lead to changes being "published” before they are
ready for integration. Also, publishing intermediate changes can lead to a deceptive
number of revisions listed in the SCM system. Itisnecessary to beable to save
intermediate steps in a changein case a coding step resultsin an error, and we want to
insulate other developers from certain checkpoints. Thisis particularly important when:

» The mechanism for specifying that a version isready for integration is primitive,
and another developer has accessto aversion as soon asit is checkedit.

* Thereisadesireto keep the revision history database "uncluttered” with only
significant changes logged.

9This pattern was pointed out to me by Doug Alan at the MIT Center for Space Research.

June 18, 2001 6 Teamwork & CM Patterns

therefore;

Devel opers should be provided with a mechanismfor check pointing changes at a
granularity that they are comfortable with. This can be provided for by a local revision
control area, Only stable code sets are checked into the Project Repository

Add a Private Repository to the Developer’s Workspace so that a developer can save
intermediate versions before checking them in to the Repository. The Private Repository
can use the same mechanisms as the Project Repository (i.e., RCS) or can simply be a
means of maintaining copies of intermediate files.

It isimportant to make sure that devel opers usng Private Versioning remember to
migrate changes to the shared verson control system at reasonableintervals.

While one way to implement thisis to provide a separate source control repository for
each developer, in addition to the shared repository, this can also be implemented within
the framework of the existing revison control system. If the revison control mechanism
provides ameans for restricting access to checked-in versionsthat are not yet ready for
use by others, we can use the common version control system asavirtual Private
Repository.

The important principle isto allow the developer to be dlowed to use the Revison
Control System to checkpoint changesin an granularity which meet their needs, without
any risk of the changes (which may beinconsistent) being available to anyoneelse.

Example

The project repository using CV S0 for version control. Add to the Developer workspace
ashadow directory in which there isan RCS!! directory for the devel oper’suse only. The
developer copiesfilesto the “main” development area before checking them into the
project repository.

Incremental Integration

Some organizations have infrequent integrations which reflect large changes. This can
make it difficult for the integration release to work as expected, complicate the process of
Work Integration[5] and make Named Stable Bases. [4] difficult to achieve when modules
do not work together. Because we often develop with one Owner Per Deliverable[6]
there will be occasional mismatches between units of work.

For iterative development to work well, it is necessary to make sur e that components
work together. Subsystems get developed at different rates. We need to find away to
make it possible to integrate without surprises.

10 cvSisaversion control system based on RCS. It uses a merging model for changes, allowing multiple
developersto work on afile at the sametime.RCS is afile based revision control systemwhich uses
locking, allowing only 1 developer to work on afile at atime.

11 For Information on RCS see: http://www.cs.purdue.edu/homes/hammer/rcs.html.

June 18, 2001 7 Teamwork & CM Patterns

therefore;

Provide a mechanismto allow developersto build all the current software periodically.
Devel opers should be discouraged from maintaining long intervals between " check-ins.”
Devel opers should also be able to build against any of the Named Stable Bases, or the
newest checked in software, at will.

In addition to assigning the task of building the entire software system periodicaly. Named
Sable Bases suggestsintervals no more frequent that aweek. (This periodic build should
be checked for interface compatibility (does it compile?) and testing (doesit gill work?)),
also encourage developersto build from filesthat are likely to bein the release (perhaps
the newest code in the revision control system’ strunk) to anticipate, and allow timeto
correct for, incompatibilities. The goal isto avoid a*“Big-Bang” integration and allow the
Developmental Build[5] to proceed smoothly.

This can be combined with Independent Wor kspaces to ensure that the changesintegrate
with acopy of the current development system. There are issuesrelating to the size of the
software system (some systems take quite awhile to build, making frequent integrations
difficult). Balance thiswith Private Versioning to allow the developer some leeway on
deciding when to integrate their new code into their environment, but do not put it off for
too long.

Example

The Developer’s Workspace could be updated (at the devel oper’ s request) to a named
stable base from the Project Repository approximately weekly. Many tools use labelsto
indicate which files belong to s specific source code set. The devel oper will also retrieve
the current filesfrom the repository to anticipate how the current changesin the
Workspace will work with files that may later be in the baseline.

Known Uses

Steve McConnell in Rapid Devel opment [11] describes the importance of allowing
developer to perform a“private build of the system on a personal machine, which the
developer then testsindividually,” in the “Using the Daily Build and Smoke Test “best
practice.

Independent Workspaces

It has been decided to implement Named Stable Bases (31)[4] However, we must balance
the need to keep up to date by Incremental Integration, with the desire of developersto
maintain a stable environment for feature devel opment/bug fixing, enabling a
Programming Episode [5]to proceed smoothly.

How can we balancethe need for developersto use current revisions, based on
periodic basdines, with the desireto avoid unduegrief by having development
dependencies change from underneath them?

It isimportant for developersto work with current versions of software subsystemsto
keep up with the latest enhancements, avoid running into aready fixed bugsfixed
elsewhere, and to avoid getting out of synch with interface changes. A developer who

June 18, 2001 8 Teamwork & CM Patterns

keeps changes un-released (or not checked in to the version control system) can disrupt
other team members. Named Stable Bases recommends integrations at an interval of no
more than once aweek. Introducing new softwareinto an environment while debugging
may cause grief by introducing new behavior, and providing distractions because of the
time spent resolving integration issues — in some cases, code may no longer compile due
to interface changes.

Some organizations, to facilitate Incremental Integration, will have a shared baseline of
code, libraries, etc. Unfortunately changing a code base, even in a different subsystem, can
cause problems when there areinterface changes, for example. Y ou want to avoid hearing
stories about developersleaving a problem at night to view it in themorning with a clear
head, only to find that one'stest environment does not compile.

therefore;

Provide Independent Workspaces where devel opers can maintain control off their

devel opment environments, This allows them to avoid having an integration step
interrupt work in progress. The environment should represent a snapshot of all the
software being developed in a system, not just the code the developer is modifying. Try to
ensure that the private development area is not used as a means of avoiding integration

i Ssues.

This pattern conflicts somewhat with Incremental Integration when a developer delays
retrieving the current release for too long, so make sure that devel opers are encouraged
to use integrate their code frequently, perhaps by providing a mechanism for easily
backing of adifficult change.

A consequence of this pattern isthat, depending on how this isimplemented, the disk
space requirements of a project may grow quickly as N developers will have their own
copies of the source code. But often the costsof personnel greatly exceed the cost of an
extradisk. A modification to this approach isthat stable, and distantly related subsystems
can be used by reference, but one should be made aware of when changes areimminent. In
this case the CM system should provide access to prior Named Stable Bases as well.

A variation on this patternisto allow developers smply to defer advancing to a new
Named Stable Base until the current problemissolved.

Example

A developer isworking on a problem The Developer Workspace is sef contained with al
of the files needed to build the system. Developers retrieve new files from the repository
only when they are ready and the current problem is solved.

Known Uses

Clearcase by Pure Atrial2 provides the concept of Views to give usthis facility. The SCM
tool CA/Endevor13 has the concept of Private Stages which alow for this. Private Stages

12 http://www. pureatria.com/

13 Computer Associates Web Page is http://www.cai.com/.

June 18, 2001 9 Teamwork & CM Patterns

are not available to anyone except the owner. When a private stage is “ready” the
developer promotes the changesin that stage to a public stage.

The“Using the Daily Build and Smoke Test” best practice in Rapid Development says
that “developers should maintain private versons of the sourcefiles they’ re working
on[11].”

Conclusions

This paper did not present an exhaustive overview of either configuration management or
social interactions, but rather aframework into which more patterns can be included.

| solated patterns can be quite useful, but connecting patterns so that they form pattern
languages can better demonstrate the power of patterns.

These patterns describe processes which can be using aimost any SCM tool, though some
make it easier than others. Independent Workspaces isakey part of most all SCM tools,
since you “check out” filesinto alocal areafor editing. Incremental Integration isSmply
amatter of and tool configuration. Private Versioning can be implemented without atool
at all by simply copying files, but some tools support the concept of checkpointing a
development stage directly. Rather than being aluxury, configuration managment isan
essential tool for developing software quickly, and thinking about how your team works
when applying SCM techniques will make it even more effective.

For find out more about patternsin generd, vist the patternsweb site: http: // st -
WWW. CS. ui uc. edu/ user s/ patterns/patterns. ht m . Therearemore
patterns about organization and socia processontheweb at htt p: // ww. bel | -

| abs. coml cgi -user/ OrgPatterns/ OrgPatterns. Thereisalso amailing list
dedicated to organizationa patterns. For information on joining this, and other pattern lists
see: http://st-ww. cs. ui uc. edu/ users/ patterns/Lists.htm.

Acknowledgments

Software configuration management processes are dightly different at all development
organizations. These patterns wereimproved by input from people with different
experiences. Brad Appleton, Javier Barreiro and Neil Harrison for provided me with other
perspectives on configuration management.. Royce Buehler and Doug Alan worked with
me on many of theissues for the configuration management system at the MIT Center for
Space Research, on which some of these patterns are based. David Ting first brought
SCM issues (particularly those involving remote teams) to my attention while | was at the
Kodak Boston Technology Center.

References

[1] A. Koenig and B. Moo, Ruminations on C++. Reading MA: Addison-Wesley,
1997.

June 18, 2001 10 Teamwork & CM Patterns

[2] S. P. Berczuk, “Organizational Multiplexing: Patterns for Processing Satellite
Telemetry with Distributed Teams,” in Pattern Languages of Program Design, vol. 2, J.
Vlissides, J. Coplien, and N. Kerth, Eds. Reading, MA: Addison-Wesley, 1996.

[3] S. P. Berczuk, “A Pattern for Separating Assembly and Processing,” in Pattern
Languages of Program Design, vol. 1, J. Coplien and D. Schmidt, Eds. Reading, MA:
Addison-Wedley, 1995.

[4] J. O. Coplien, “A Generative Development Process Pattern Language,” in Pattern
Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[5] W. Cunningham, “Episodes. A Pattern Language of Competitive Development,” in
Pattern Languages of Program Design 2. Reading, MA: Addison-Wesley, 1996.

[6] A. Cockburn, “The Interaction of Social 1ssues and Software Architecture,”
Communications of the ACM, vol. 39, pp. 40-46, 1996.

[7] R. E. Grinter, “Understanding Dependencies: A Study of the Coordination
Challengesin Software Development.,” . Irvine, CA: University of California, 1996.

(8] W. Humphrey, Managing the Software Process. Reading, MA: Addison-Wesley,
1990.

[9] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Oxford
University Press, 1977 .

[10] S. Berczuk, “Finding Solutions Through Pattern Languages,” |EEE Computer,
vol. 27, pp. 75-76, 1994.

[11] S. McConnell, Rapid Development, Taming Wild Software Schedules. Redmond,
WA: Microsoft Press, 1996.

June 18, 2001 11 Teamwork & CM Patterns

