
June 18, 2001 1 Teamwork & CM Patterns

Teamwork and Configuration Management: Some Patterns1
Steve Berczuk

berczuk@acm.org

Coordination and communication are two important parts of a successful
development process. Social and organizational constraints have an effect
on the development process. By thinking of software configuration
management(SCM) in the context of how the SCM process helps team
members work together we can apply SCM more effectively. These issues
are important regardless of language used, but these patterns come out of
my experience is in doing C++ development. This paper presents three
configuration management patterns and shows how they relate to
organizational patterns.

Introduction

Software development involves social process as well as a technical issues. As teams get
larger, communication becomes harder2. To address these issues developers use processes
and tools to help the team share a common vision of the system it is developing. Designing
with team communication issues in mind can make the system easier to build[2] [3].
Considering these interactions in the implementation of the development process can also
be useful, particularly when using a language such as C++, where it is easy to have many
compile time dependencies between modules different people are developing.

Much of my development experience has been working with teams of people who work in
different locations. In these cases effective configuration management was essential for
cooperative development. Even when your project involves people in the same location
though, it is easy to have ineffective configuration management cause problems which
generate extra work.

Following patterns such as these can simplify the development of a number of systems in
C++ where the common code base was changing rapidly, and we needed to stay in
synchronization, while at the same time protecting each developer from changes occuring
out from under them. Projects I have worked on which had these issues include a satellite
telemetry processing system, an document imaging system, and an scheduling system. At
some level though, any project being done with a demanding set of customers and a tight
schedule will have similar issues.

Successful development organizations exhibit certain patterns which address the
coordination and communication issues. Coplien catalogs some of the steps in the

1 This is a pre-copyedit version of the paper that appeared in the July/Aug 97 C++ Report (Vol 9 #7 pp28
ff).

2 One rule of thumb is that “communication overhead becomes serious as there are too many people on the
project to fit at one lunch table at the same time.”[1]

June 18, 2001 2 Teamwork & CM Patterns

process[4], Cunningham[5] describes patterns which comprise the Development Episodes
which occur in a software development organization, and Cockburn[6] describes patterns
around how social issues affect the process. Software configuration management (SCM)
can be used to help realize these patterns.

Software Configuration Management

There are many aspects of configuration management; this paper discusses some basic
SCM patterns and how they can be used to implement the broader organizational patterns
relating to coordination among developers. Grinter[7] describes some of the coordination
challenges of software development process in detail.

A standard definition of software configuration management includes the following
aspects3:

• Configuration Identification, which includes determining which body of source code
you are working with. This makes it possible to know, among other things, that you
are fixing a bug in the source code which is in the correct release.

• Configuration Control, controlling the release of a product and changes to it
throughout the lifecycle to ensure consistent(re) creation of a baseline software
product. This can include not only changes to source files, but also which compiler and
other tools were used so issues such as differences between compiler support for
language features can be taken into account.

• Status Accounting Audit, recording and reporting the status of components and
change requests, and gathering vital statistics about components in the product. One
question we may want to answer is:, "How manyfiles were affected by fixing this one
bug?"and

• Review. validating the completeness of a product and maintaining consistency among
the components by ensuring that components are in an appropriate state throughout
the entire projectlife cycle and that the product is a well -defined collection
ofcomponents.

It can also be said to include4

• Build Management, ie, managing what processes and tools developers use to create a
release, so it can be repeated.

• Process Management,ensuring that the organization’s development processes are
followed by those developing and releasing the software

• Team Work, controlling the interactions of all the developers working together on a
product so that people’s changes get inserted into the system in a timely fashion.

3 Thanks to Brad Appleton for summarizing these points quite succinctly.

4 Private Communication with Brad Appleton.

June 18, 2001 3 Teamwork & CM Patterns

Of these elements, the latter 3 play the largest role in the day to day workings of the
development process, since they affect what a developer does day to day.

Ideally a configuration management process should serve both broad organizational
interests as well as making the work of a C++ developer easier. A good SCM process
makes it possible for developers to work together on a project effectively , both as
individuals and as members of a team. While there are various tools that can make the
process simpler, tools alone are not enough; The re are also certain patterns for software
configuration management5 that exist in successful development organizations. 6

With respect to team interactions, a successful configuration management process allows:

• Developers to work together on a project, sharing common code, for example
a developer of a Derived class needs to stay in synch with whoever is
developing a base class, and a client of a class needs to be able to work with
the current version of that class.

• Developers to share development effort on a module, such a class or simply a
single source file. This can be by design or to allow someone to fix a bug in
“another person’s” module if the other person in unavailable.

• Developers to have access to the current stable (tested) version of a system, so
you can check if your code will work when someone else tries to integrate it
into the current code set.

• The ability to back up to a previous stable version (one of a number of Named
Stable Bases [4]), of a system. This is important to allow a developer to test
their code against the prior consistent versions of the system to track down
problems.

• The ability of a developer to checkpoint changes to a module and to back off
to a previous version of that module. This facility makes it safer to experiment
with a major change to a module that is basically working.

Attaining all of these goals involves compromises (many people working of one body of
code makes maintaining consistency difficult, for example). This paper presents 3 pattern s
that illustrate how configuration management can help us realize larger organizational
patterns.

The patterns are illustrated with an example which has the following components:

• A number of Developer Workspaces, each representing the environment of a specific
developer in the organization.

• The Project Repository, which is the common set of files which are used in a
development project, for example, the Version Control system.

5These patterns focus on source code configuration management. A complete SCM system should also
take testing, tools, and other elements of the software process into account.

6A detailed discussion of Configuration Management can be found in [8] among other sources.

June 18, 2001 4 Teamwork & CM Patterns

Configuration management is best implemented with tools that simplify and/or enforce
policies, so reference is made to tools in the examples. The patterns are independent of the
tools used.

An Overview of the Patterns

This section summarizes7 the intents and solutions of the patterns describe here and those
we reference.

Configuration Management Patterns Presented Here

• Private Versioning: Allow a developer to checkpoint changes for convenience and
security without violating organizational standards regarding granularity of
revisions.

• Incremental Integration: Provide a means for a developer to “pre-test” interfaces
before an integration build.

• Independent Workspace: Make sure that new builds do not interfere with a
developer’s work in progress

 Figure 1 shows how these Patterns relate to other organization patterns, with these
patterns represented by shadowed boxes. These patterns are presented in Alexandrian
[9] form which is a loosely structured form in which the following elements of a
pattern8 are presented:

• The Context:What are the issues with which we are working.

• The Problem: The specific issue we want to address, including the forces we
may want to resolve.

• The Solution: How to resolve the problem in our specific situation.

.Associated Patterns

Since these patterns connect to other patterns, this section briefly describes the patterns.
In addition to the printed sources cited, these patterns are also described at the
Organization patterns web site (http://www.bell-labs.com/cgi-
user/OrgPatterns/OrgPatterns).

Patterns from A Generative Development Process Pattern Language [4] (Shown in figure
1 with a solid line).

• Code Ownership: assign a single developer responsibility for a module.

7 These patterns provide more information than can be summarized in one sentence, so these summaries
leave out many details, and provided here are only for convenience. In particular the context in which the
pattern applies is an essential part of the pattern. Please consult the original sources for this detail.

8 For a general introduction to pattern concepts see http://www.enteract.com/~bradapp/docs/patterns -
intro.html and [10].

June 18, 2001 5 Teamwork & CM Patterns

• Named Stable Bases, provides guidance for how often to integrate, specifying that the
integrated versions are available as working “releases” for other developers.

Patterns from Episodes [5] (Shown in figure 1 with rounded corner boxes).

• Programming Episode: divide a program into discrete episodes with deliverables.

• Work Integration: Assemble recent work products.

• Developmental Build: build the system, and do regression tests (to permit Named
Stable Bases)

Patterns from The Interaction of Social Issues and Software Architecture [6] show in
figure 1 with a bold solid line).

• Owner Per Deliverable: Make sure that each deliverable entity has a person
responsible so that the deliverable does not get overlooked.

June 18, 2001 6 Teamwork & CM Patterns

The Patterns

Private Versioning9

A developer should have a way to checkpoint changes without making these changes
available to the development team at large. We want to implement Code Ownership(17)
[4] but subsystems never work entirely in isolation.

Periodic integration of a developer's work with that of other members of the
development team is important for ensuring stability. Checkpointing only after
completing major changes can make it difficult to back off of one phase of a change. Using
the revision control area for this can lead to changes being "published" before they are
ready for integration. Also, publishing intermediate changes can lead to a deceptive
number of revisions listed in the SCM system. It is necessary to be able to save
intermediate steps in a change in case a coding step results in an error, and we want to
insulate other developers from certain checkpoints. This is particularly important when:

• The mechanism for specifying that a version is ready for integration is primitive,
and another developer has access to a version as soon as it is checked it.

• There is a desire to keep the revision history database "uncluttered" with only
significant changes logged.

9This pattern was pointed out to me by Doug Alan at the MIT Center for Space Research.

Named Stable
Bases

Code Ow nership

Developmental Build

Ow ner Per
Deliverable

Private Versioning

Incremental
Integrat ion

Independent
Workspaces

W ork Integrat ion

Programming
Episode

Figure 1: Relationships Between the Patterns

June 18, 2001 7 Teamwork & CM Patterns

therefore:

Developers should be provided with a mechanism for check pointing changes at a
granularity that they are comfortable with. This can be provided for by a local revision
control area, Only stable code sets are checked into the Project Repository

Add a Private Repository to the Developer’s Workspace so that a developer can save
intermediate versions before checking them in to the Repository. The Private Repository
can use the same mechanisms as the Project Repository (i.e., RCS) or can simply be a
means of maintaining copies of intermediate files.

It is important to make sure that developers using Private Versioning remember to
migrate changes to the shared version control system at reasonable intervals.

While one way to implement this is to provide a separate source control repository for
each developer, in addition to the shared repository, this can also be implemented within
the framework of the existing revision control system. If the revision control mechanism
provides a means for restricting access to checked-in versions that are not yet ready for
use by others, we can use the common version control system as a virtual Private
Repository.

The important principle is to allow the developer to be allowed to use the Revision
Control System to checkpoint changes in an granularity which meet their needs, without
any risk of the changes (which may be inconsistent) being available to anyone else.

Example

The project repository using CVS10 for version control. Add to the Developer workspace
a shadow directory in which there is an RCS11 directory for the developer’s use only. The
developer copies files to the “main” development area before checking them into the
project repository.

Incremental Integration

Some organizations have infrequent integrations which reflect large changes. This can
make it difficult for the integration release to work as expected, complicate the process of
Work Integration[5] and make Named Stable Bases. [4] difficult to achieve when modules
do not work together. Because we often develop with one Owner Per Deliverable[6]
there will be occasional mismatches between units of work.

For iterative development to work well, it is necessary to make sure that components
work together. Subsystems get developed at different rates. We need to find a way to
make it possible to integrate without surprises.

10 CVS is a version control system based on RCS. It uses a merging model for changes, allowing multiple
developers to work on a file at the same time.RCS is a file based revision control system which uses
locking, allowing only 1 developer to work on a file at a time.

11 For Information on RCS see: http://www.cs.purdue.edu/homes/hammer/rcs.html.

June 18, 2001 8 Teamwork & CM Patterns

therefore:

Provide a mechanism to allow developers to build all the current software periodically.
Developers should be discouraged from maintaining long intervals between "check-ins."
Developers should also be able to build against any of the Named Stable Bases, or the
newest checked in software, at will.

In addition to assigning the task of building the entire software system periodically. Named
Stable Bases suggests intervals no more frequent that a week. (This periodic build should
be checked for interface compatibility (does it compile?) and testing (does it still work?)),
also encourage developers to build from files that are likely to be in the release (perhaps
the newest code in the revision control system’s trunk) to anticipate, and allow time to
correct for, incompatibilities. The goal is to avoid a “Big-Bang” integration and allow the
Developmental Build[5] to proceed smoothly.

This can be combined with Independent Workspaces to ensure that the changes integrate
with a copy of the current development system. There are issues relating to the size of the
software system (some systems take quite a while to build, making frequent integrations
difficult). Balance this with Private Versioning to allow the developer some leeway on
deciding when to integrate their new code into their environment, but do not put it off for
too long.

Example

The Developer’s Workspace could be updated (at the developer’s request) to a named
stable base from the Project Repository approximately weekly. Many tools use labels to
indicate which files belong to s specific source code set. The developer will also retrieve
the current files from the repository to anticipate how the current changes in the
Workspace will work with files that may later be in the baseline.

Known Uses

Steve McConnell in Rapid Development [11]describes the importance of allowing
developer to perform a “private build of the system on a personal machine, which the
developer then tests individually,” in the “Using the Daily Build and Smoke Test “best
practice.

Independent Workspaces

It has been decided to implement Named Stable Bases (31)[4] However, we must balance
the need to keep up to date by Incremental Integration, with the desire of developers to
maintain a stable environment for feature development/bug fixing, enabling a
Programming Episode [5]to proceed smoothly.

How can we balance the need for developers to use current revis ions, based on
periodic baselines, with the desire to avoid undue grief by having development
dependencies change from underneath them?

It is important for developers to work with current versions of software subsystems to
keep up with the latest enhancements, avoid running into already fixed bugs fixed
elsewhere, and to avoid getting out of synch with interface changes. A developer who

June 18, 2001 9 Teamwork & CM Patterns

keeps changes un-released (or not checked in to the version control system) can disrupt
other team members. Named Stable Bases recommends integrations at an interval of no
more than once a week. Introducing new software into an environment while debugging
may cause grief by introducing new behavior, and providing distractions because of the
time spent resolving integration issues — in some cases, code may no longer compile due
to interface changes.

Some organizations, to facilitate Incremental Integration, will have a shared baseline of
code, libraries, etc. Unfortunately changing a code base, even in a different subsystem, can
cause problems when there are interface changes, for example. You want to avoid hearing
stories about developers leaving a problem at night to view it in the morning with a clear
head, only to find that one's test environment does not compile.

therefore:

Provide Independent Workspaces where developers can maintain control off their
development environments, This allows them to avoid having an integration step
interrupt work in progress. The environment should represent a snapshot of all the
software being developed in a system, not just the code the developer is modifying. Try to
ensure that the private development area is not used as a means of avoiding integration
issues.

This pattern conflicts somewhat with Incremental Integration when a developer delays
retrieving the current release for too long, so make sure that developers are encouraged
to use integrate their code frequently, perhaps by providing a mechanism for easily
backing of a difficult change.

A consequence of this pattern is that, depending on how this is implemented, the disk
space requirements of a project may grow quickly as N developers will have their own
copies of the source code. But often the costs of personnel greatly exceed the cost of an
extra disk. A modification to this approach is that stable, and distantly related subsystems
can be used by reference, but one should be made aware of when changes are imminent. In
this case the CM system should provide access to prior Named Stable Bases as well.

A variation on this pattern is to allow developers simply to defer advancing to a new
Named Stable Base until the current problem is solved.

Example

A developer is working on a problem The Developer Workspace is self contained with all
of the files needed to build the system. Developers retrieve new files from the repository
only when they are ready and the current problem is solved.

Known Uses

Clearcase by Pure Atria12 provides the concept of Views to give us this facility. The SCM
tool CA/Endevor13 has the concept of Private Stages which allow for this. Private Stages

12 http://www.pureatria.com/

13 Computer Associates Web Page is http://www.cai.com/.

June 18, 2001 10 Teamwork & CM Patterns

are not available to anyone except the owner. When a private stage is “ready” the
developer promotes the changes in that stage to a public stage.

The “Using the Daily Build and Smoke Test” best practice in Rapid Development says
that “developers should maintain private versions of the source files they’re working
on[11].”

Conclusions

This paper did not present an exhaustive overview of either configuration management or
social interactions, but rather a framework into which more patterns can be included.
Isolated patterns can be quite useful, but connecting patterns so that they form pattern
languages can better demonstrate the power of patterns.

These patterns describe processes which can be using almost any SCM tool, though some
make it easier than others. Independent Workspaces is a key part of most all SCM tools,
since you “check out” files into a local area for editing. Incremental Integration is simply
a matter of and tool configuration. Private Versioning can be implemented without a tool
at all by simply copying files, but some tools support the concept of checkpointing a
development stage directly. Rather than being a luxury, configuration managment is an
essential tool for developing software quickly, and thinking about how your team works
when applying SCM techniques will make it even more effective.

For find out more about patterns in general, visit the patterns web site : http://st-
www.cs.uiuc.edu/users/patterns/patterns.html. There are more
patterns about organization and social process on the web at http://www.bell-
labs.com/cgi-user/OrgPatterns/OrgPatterns. There is also a mailing list
dedicated to organizational patterns. For information on joining this, and other pattern lists
see: http://st-www.cs.uiuc.edu/users/patterns/Lists.html.

Acknowledgments

Software configuration management processes are slightly different at all development
organizations. These patterns were improved by input from people with different
experiences. Brad Appleton, Javier Barreiro and Neil Harrison for provided me with other
perspectives on configuration management.. Royce Buehler and Doug Alan worked with
me on many of the issues for the configuration management system at the MIT Center for
Space Research, on which some of these patterns are based. David Ting first brought
SCM issues (particularly those involving remote teams) to my attention while I was at the
Kodak Boston Technology Center.

References

[1] A. Koenig and B. Moo, Ruminations on C++. Reading MA: Addison-Wesley,
1997.

June 18, 2001 11 Teamwork & CM Patterns

[2] S. P. Berczuk, “Organizational Multiplexing: Patterns for Processing Satellite
Telemetry with Distributed Teams,” in Pattern Languages of Program Design, vol. 2, J.
Vlissides, J. Coplien, and N. Kerth, Eds. Reading, MA: Addison-Wesley, 1996.

[3] S. P. Berczuk, “A Pattern for Separating Assembly and Processing,” in Pattern
Languages of Program Design, vol. 1, J. Coplien and D. Schmidt, Eds. Reading, MA:
Addison-Wesley, 1995.

[4] J. O. Coplien, “A Generative Development Process Pattern Language,” in Pattern
Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[5] W. Cunningham, “Episodes: A Pattern Language of Competitive Development,” in
Pattern Languages of Program Design 2. Reading, MA: Addison-Wesley, 1996.

[6] A. Cockburn, “The Interaction of Social Issues and Software Architecture,”
Communications of the ACM, vol. 39, pp. 40-46, 1996.

[7] R. E. Grinter, “Understanding Dependencies: A Study of the Coordination
Challenges in Software Development.,” . Irvine, CA: University of California, 1996.

[8] W. Humphrey, Managing the Software Process. Reading, MA: Addison-Wesley,
1990.

[9] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Oxford
University Press, 1977 .

[10] S. Berczuk, “Finding Solutions Through Pattern Languages,” IEEE Computer,
vol. 27, pp. 75-76, 1994.

[11] S. McConnell, Rapid Development, Taming Wild Software Schedules. Redmond,
WA: Microsoft Press, 1996.

