
The Team That Walked 
Through Walls

Overcoming Barriers to Agile SCM

“‘... Pixel got the tag ‘Schrödinger’s Cat’ 
hung on him because he walks through 
walls.’

‘How does he do that?’

Jane Libby answered, ‘It’s impossible but 
he’s so young he doesn’t know it’s impos-
sible, so he does it anyhow.’”

-- The Cat Who Walks Through Walls 
Robert Heinlein.

The Art of the Possible
One of the fundamental principles 

of Scrum is “The Art of the Possible.” 
All agile methods have at their heart 
the idea that, if you rethink your work 
style and overcome the obstacles that 
old ways of thinking create, you can 
improve the feedback loop among and 

improve value for project stakeholders. 
When teams start to explore agile 
methods, team members often believe 
that these processes can’t possibly 
work because agile methods require 
people to do more than they possibly 
can. What is missing in these cases is the 
understanding that the current ways of 
doing things are what place constraints 
on what is possible. Very often teams 
don’t do some simple things that can 
help them be more agile because they 
think that they cannot. One of the areas 
where this is often the case is the build 
process. 

By improving your build process 
your team can deliver better quality 
code more quickly, and make the 
first steps towards being more agile. 

But first they have to overcome their 
preconceptions of what they can and 
cannot do.

Builds and Feedback
An essential aspect of agile 

processes is the principle of feedback. 
You do something, you compare it to 
where you want to be, and you adjust. 
Agile methods do this at many levels: 

• Between iterations, you compare 
a feature list to what you have 
planned for the next iteration. 

• During an iteration, you compare 
where you are in relationship to 
your goal and adjust your work. 
In the developer workspace, you 
code and then run tests to see if 
your code meets the requirements 
specified by your tests. 

By Steve Berczuk

Steve is a software developer, 

author, trainer, and consultant. 

His areas of experience include 

building software systems using 

object-oriented languages and 

agile development techniques, 

software and organizational pat-

terns, and software configura-

tion management patterns and 

techniques. He works at Fast 

Search and Transfer. 

http://www.amazon.com/Cat-Who-Walks-Through-Walls/dp/0441094996/sr=8-8/qid=1158065587/ref=pd_bbs_8/104-4494723-2797504?ie=UTF8&s=books
mailto: steve@berczuk.com
http://www.fastsearch.com
http://www.fastsearch.com


11    AgileDevelopment  |  Fall 2006

An essential aspect of this 
feedback process is working software. 
To make any kind of effective 
measurement of how much you have 
done, you need consistently built 
software. And to maintain velocity you 
need to detect problems as soon as 
they occur. Needlessly broken builds 
stop the team. And inconsistencies 
between build environments can mask 
problems.

Patterns for Repeatable Builds
The first thing that a team can 

do to address these issues is to define 
and use a repeatable build process. 
There are patterns that will help your 
team’s configuration management and 
build process be more agile. Four key 
patterns for this are: 

• Integration build, which allows 
you to verify that developer 
changes work in a standard 
environment. 

• Private workspace, which 
enables you to create developer 
environments that are consistent 
across team members.

• Repository, which provides a 
standard mechanism for getting 
the artifacts you need to create a 
private workspace.

• Private system build creates a 

mechanism where a developer 
can build the software in a way 
that is close to the integration 
build environment. This 
removes problems caused 
by inconsistencies between a 
developer workspace and the 
standard workspace

One of the keys to an effective 
build process is that you create an 
integration build and a similar private 
system build in a private workspace.

A repeatable integration build 
process is one in which you can 
create a workspace anywhere and 
know exactly what you are building: 
what code, what versions of what 
libraries, etc. This is essential both for 
supporting customers and for avoiding 
wasting time. 

A private workspace and private 
system build help to ensure that 
developers can test their changes 
before committing changes to a build, 
thus reducing the chance for a broken 
integration build. 

I’ll discuss some ways that you 
can move your team towards this goal 
in a bit, but first let me go though 
some of the common excuses teams 
use to avoid changing how they work.

Excuses, Excuses
It’s hard to think of a reason to 

not like reproducible builds and few 
argue that that they are a bad thing. 
Some people argue however that 
they are not right for their team at 
the moment. Here are some common 
rationales and counterarguments. Each 
of these excuses shares a common 
theme: inertia is often difficult to 
overcome when you have a system 
that works adequately.

• We have something that works, 
why change it? If the system 
you have in place does, in fact, 
work well, they maybe you don’t 
need to change a thing. In many 
cases build processes that are 
not repeatable and executable 
in both an integration and 
development workspaces work 
only in the sense that you can 
build an executable of some sort. 
If you find yourself with frequent 
broken builds or with problem 
reports that are caused by an 
incorrect version of some artifact 
then what you have doesn’t work 
and you should change it.

• We don’t have the time to change 
now; we have a release to get out 
the door. Reworking the build 
process can be an incremental 
process. You can pick a couple of 
modules to experiment with and 

http://www.amazon.com/Software-Configuration-Management-Patterns-Integration/dp/0201741172/sr=1-1/qid=1158065741/ref=sr_1_1/104-4494723-2797504?ie=UTF8&s=books


12    AgileDevelopment  |  Fall 2006

adapt the process to the others. 
If you really can’t take any kind 
of hit in your schedule, then you 
can start a parallel process in the 
background. If you are working 
off of the same codeline you can 
create a parallel integration build 
process and run all of your unit 
and integration tests against 
that as well as your current build. 
You do have integration and unit 
tests, right?

• I don’t need to setup/run a build 
in my workspace. I’m a developer. 
There are two sides to this 
issue. It’s true that not everyone 
on a team needs to know the 
inner workings of the build and 
release toolset. Even on agile 
interdisciplinary teams there will 
be experts on certain aspects 
of your application. However, 
everyone should be willing and 
able to pitch in. You should create 
a process that is easy to execute 
and that requires little day-to-day 
work, but the build should be 
something that everyone owns, 
much as testing is.

There are many more reasons one 
can come up with to not improve the 
build process. They have their roots 
in a natural tendency to keep things 

as they are because they work well 
enough. The risk is that the way that 
things work now is often optimized 
for the short term and the nearby. 
The fact that a process works well for 
the development team and allows 
them to deliver code to a QA team, for 
example, does not mean that you are 
delivering a better quality product, 
or that the end-to-end delivery time 
is shorter. Often a locally optimized 
process creates a situation where 
you have more cycles because it is 
harder to identify and reproduce 
configurations down the line. As agile 
developers, we need to focus on 
delivering value to stakeholders and 
processes that make it easier to locate 
problems earlier, increase feedback, 
and increase the value. 

Some of the changes you need to 
make are difficult, but many are not as 
daunting as they seem once you get 
started.

Better Builds
Developers on agile teams need 

a way to set up their workspaces 
quickly and easily. Enabling your team 
to have consistent builds will allow 
you to have a more accurate picture of 
the real status of the code and avoid 
extra cycles that having inconsistent 
environments can cause. Having a 

well-defined workspace creation 
process will also allow new developers 
to become productive more 
quickly—setting up a development 
environment should take minutes, not 
days. 

A side effect of having a good 
workspace creation process is that 
you are now doing builds on every 
developer’s machine many times a day. 
Doing this will allow you to identify 
configuration issues, as it is inevitable 
that each developer will have slightly 
different configuration parameters. For 
example, you might have a test that 
requires a database; developers will 
have different database connections. 
Or you might need to access a 
file system resource; having every 
developer build and run a suite of tests 
makes it easy to detect when you’ve 
been relying on some sort of hard-
coded resource path.

You can create a process that has 
the following steps:

• Install some basic tools, for 
example a version control 
client, a compiler, and perhaps 
a build tool such as Maven or 
ant. Installing these tools can be 
part of a documented, manual 
process, or you can reduce this 
step to one by running a script 
that installs everything for you.

http://maven.apache.org
http://ant.apache.org


13    AgileDevelopment  |  Fall 2006

• Checkout a project from version 
control containing all of the 
source you need for your project. 
If you are using a tool like Maven,  
dependencies will be received 
automatically from a central 
repository. 

• Build the project. A tool like 
Maven or ant will reduce this to 
one line.

Once you think about how 
your project is set up, this is a 
straightforward process to implement. 
The hard part is that making your 
workspace creation process standard 
and reproducible will force you to 
confront inconsistencies in your 
approach. But it’s better to find the 
inconsistencies now than once your 
application is deployed at a customer 
site.

The exact details of how to create 
a workspace will vary from project 
to project. The requirements for the 
process are:

• Steps that are repeated 
frequently should be automated 
to reduce the chance for errors. 
You want your development 
team to focus on writing and 
testing code; you don’t want 
them spending cycles on 
remembering manual processes, 

While it might be acceptable to 
ask team members to download 
some files to set up a project, 
the regular builds should be 
automated. If there are manual 
steps, however, you should 
have some mechanisms in place 
to identify when a manually-
installed component is out of 
date.

• The build process should be 
reproducible. If you were to 
reproduce the process on a new 
machine you should get the 
same results.

Now your developers can build a 
workspace easily, and in the same way 
as everyone else. This makes it easier 
to get reproducible results.

Summary
Fixing your build process will 

provide for huge rewards. Fixing the 
process may uncover other issues 
with your infrastructure. Be prepared 
to address them and you will more 
than make up time spent in improving 
how you work. Making these changes 
may seem difficult, but, like many 
aspects of adopting an agile process, 
the hardest part is overcoming the 
tendency to not want to change.

The Secrets of
Agile Teamwork: 

BEYOND
TECHNICAL SKILLS

December 5-7 
Portland, Oregon

Download a registration form at:
http://www.estherderby.com/downloads/SATDec2006.pdf

Spend three days with two of the field's
most effective creators of high-performing
teams — Esther Derby and Diana Larsen.

Effective self-organizing
teams rely on personal and
interpersonal effectiveness.
In this workshop, we'll
practice the skills you need
to succeed and lead on a
self-organizing team.

How do you
develop, grow,
and maintain a

functioning
self-organizing

team?

•Improve the quality of interactions with team members,
customers and others outside the team 

•Increase the speed and effectiveness of feedback 
•Contribute to an environment for team success

FOR MORE INFORMATION, CONTACT: 
Esther Derby
derby@estherderby.com  •  612-724-8114
Diana Larsen
dlarsen@futureworksconsulting.com  •  503-288-3550

http://www.estherderby.com/workshops/secrets.htm

